zoukankan      html  css  js  c++  java
  • LeetCode 486. Predict the Winner

    原题链接在这里:https://leetcode.com/problems/predict-the-winner/description/

    题目:

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

    Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

    Example 1:

    Input: [1, 5, 2]
    Output: False
    Explanation: Initially, player 1 can choose between 1 and 2. 
    If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
    So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
    Hence, player 1 will never be the winner and you need to return False.

    Example 2:

    Input: [1, 5, 233, 7]
    Output: True
    Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
    Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

    Note:

    1. 1 <= length of the array <= 20.
    2. Any scores in the given array are non-negative integers and will not exceed 10,000,000.
    3. If the scores of both players are equal, then player 1 is still the winner.

    题解:

    dp[i][j]是nums 从i到j这一段[i, j] 先手的player 比 后手多得到多少分.

    先手 pick first. 递推时 dp[i][j] = Math.max(nums[i]-dp[i+1][j], nums[j]-dp[i][j-1]). 如果A选了index i的score, B只能选择[i+1, j]区间内的score. 如果A选了index j的score, B只能选择[i, j-1]区间内的score.

    看到计算dp[i][j]时, i 需要 i+1, j 需要 j-1. 所以循环时 i从大到小, j 从小到大.

    初始化区间内只有一个数字时就是能得到的最大分数.

    答案看[0, nums.length-1]区间内 A得到的score是否大于等于0.

    Time Complexity: O(len^2). len = nums.length.

    Space: O(len^2).

    AC Java:

     1 class Solution {
     2     public boolean PredictTheWinner(int[] nums) {
     3         if(nums == null || nums.length == 0){
     4             return true;
     5         }
     6         
     7         int len = nums.length;
     8         int [][] dp = new int[len][len];
     9         for(int i = len-1; i>=0; i--){
    10             for(int j = i+1; j<len; j++){
    11                 int head = nums[i]-dp[i+1][j];
    12                 int tail = nums[j]-dp[i][j-1];
    13                 dp[i][j] = Math.max(head, tail);
    14             }
    15         }
    16         return dp[0][len-1] >= 0;
    17     }
    18 }

    空间优化.

    Time Complexity: O(len^2). len = nums.length.

    Space: O(len).

    AC Java:

     1 class Solution {
     2     public boolean PredictTheWinner(int[] nums) {
     3         if(nums == null || nums.length == 0){
     4             return true;
     5         }
     6         
     7         int len = nums.length;
     8         int [] dp = new int[len];
     9         for(int i = len-1; i>=0; i--){
    10             for(int j = i+1; j<len; j++){
    11                 int head = nums[i]-dp[j];
    12                 int tail = nums[j]-dp[j-1];
    13                 dp[j] = Math.max(head, tail);
    14             }
    15         }
    16         return dp[len-1] >= 0;
    17     }
    18 }

    另一种implementation.

    Time Complexity: O(len^2). len = nums.length.

    Space: O(len^2).

     1 class Solution {
     2     public boolean PredictTheWinner(int[] nums) {
     3         if(nums == null || nums.length == 0){
     4             return true;
     5         }
     6         
     7         int n = nums.length;
     8         int [][] dp = new int[n][n];
     9         for(int i = 0; i<n; i++){
    10             dp[i][i] = nums[i];
    11         }
    12         
    13         for(int size = 1; size<n; size++){
    14             for(int i = 0; i+size<n; i++){
    15                 dp[i][i+size] = Math.max(nums[i]-dp[i+1][i+size], nums[i+size]-dp[i][i+size-1]);
    16             }
    17         }
    18         
    19         return dp[0][n-1] >= 0;
    20     }
    21 }

    Exact the same as Stone Game.

    Reference: https://discuss.leetcode.com/topic/76830/java-9-lines-dp-solution-easy-to-understand-with-improvement-to-o-n-space-complexity 

  • 相关阅读:
    什么是web标准
    Axure 快捷方式
    asp.net mvc4中model与Model的区别
    Git 操作常用命令
    ASP.NET MVC 中@html.ActionLink的几种参数格式
    Datagridview控件实现分页功能
    winform 拖动无边框窗体(调用Windows API)
    利用C#轻松创建不规则窗体
    Linq to sql 操作
    第一篇博客,写些学习感想
  • 原文地址:https://www.cnblogs.com/Dylan-Java-NYC/p/7609305.html
Copyright © 2011-2022 走看看