zoukankan      html  css  js  c++  java
  • POJ3259——Wormholes(Bellman-Ford+SPFA)

    Wormholes

    Description
    While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
    As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
    To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
    Input
    Line 1: A single integer, F. F farm descriptions follow.
    Line 1 of each farm: Three space-separated integers respectively: N, M, and W
    Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
    Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
    Output
    Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).
    Sample Input
    2
    3 3 1
    1 2 2
    1 3 4
    2 3 1
    3 1 3
    3 2 1
    1 2 3
    2 3 4
    3 1 8
    Sample Output
    NO
    YES

    题目大意:

        FJ童鞋家的农田里面有若干个虫洞,有一些虫洞是相连的,可以消耗一些时间爬过去(无向)。还有一些虫洞比较特殊,从一头爬到那一头之后时间会退后一些(有向)

        FJ希望通过爬虫洞(?)来时时间退后,从而能看到另外一个自己。根据输入的虫洞信息来判断是否可以实现FJ的愿望。

    解题思路:

        说白了就是判断有向图有没有负环。Bellman-Ford算法和SPFA算法都可以用来判断是否有负环。

    1.Bellman-Ford算法:

    1 For i=1 to |G.V|-1
    2     For each edge(u,v)属于G.E
    3         RELAX(u,v,w)
    4 For each edge(u,v)属于G.E   //此循环用来判断负环
    5     If (v.d>u.d+w(u,v)
    6         Return FALSE;
    7 Return TRUE;

    2.SPFA算法:

      可以通过判断 顶点i进入队列的次数是否大于N-1来判断是否存在负环。

      PS:相对于没有负环的有N个顶点的有向图来说,一个顶点最多松弛N-1次即可达到最短路。

    Code(SPFA):

     1 #include<stdio.h>
     2 #include<string>
     3 #include<iostream>
     4 #include<limits.h>
     5 #include<queue>
     6 using namespace std;
     7 int edge[600][600],times[5505],dis[5505];
     8 bool vis[5505];
     9 int N;
    10 void init(int N)
    11 {
    12     for (int i=1; i<=N; i++)
    13         for (int j=1; j<=N; j++)
    14             edge[i][j]=INT_MAX;
    15 }
    16 bool SPFA(int begin)
    17 {
    18     for (int i=1; i<=N; i++)
    19     {
    20         dis[i]=INT_MAX;
    21         vis[i]=0;
    22         times[i]=0;
    23     }
    24     queue<int> Q;
    25     Q.push(begin);
    26     dis[begin]=0;
    27     vis[begin]=1;
    28     times[begin]++;
    29     while (!Q.empty())
    30     {
    31         begin=Q.front();
    32         Q.pop();
    33         vis[begin]=0;
    34         for (int j=1; j<=N; j++)
    35             if (j!=begin&&edge[begin][j]!=INT_MAX&&dis[j]>dis[begin]+edge[begin][j])
    36             {
    37                 dis[j]=edge[begin][j]+dis[begin];
    38                 if (!vis[j])
    39                 {
    40                     Q.push(j);
    41                     vis[j]=1;
    42                     times[j]++;
    43                     if (times[j]>=N) return 0;
    44                 }
    45             }
    46     }
    47     return 1;
    48 }
    49 int main()
    50 {
    51     int T;
    52     cin>>T;
    53     while (T--)
    54     {
    55         int M,W;
    56         cin>>N>>M>>W;
    57         init(N);
    58         for (int i=1; i<=M; i++)
    59         {
    60             int x1,x2,x3;
    61             scanf("%d%d%d",&x1,&x2,&x3);
    62             if (x3<edge[x1][x2])
    63                 edge[x1][x2]=edge[x2][x1]=x3;
    64         }
    65         for (int i=1; i<=W; i++)
    66         {
    67             int x1,x2,x3;
    68             scanf("%d%d%d",&x1,&x2,&x3);
    69             edge[x1][x2]=0-x3;
    70         }
    71         bool ok=SPFA(1);
    72         if (ok) printf("NO
    ");
    73         else printf("YES
    ");
    74     }
    75     return 0;
    76 }
  • 相关阅读:
    python 回溯法 记录
    java提高篇(二三)-----HashMap
    java提高篇(二二)---LinkedList
    java提高篇(二一)-----ArrayList
    java提高篇(二十)-----集合大家族
    java提高篇(十九)-----数组之二
    java提高篇(十八)-----数组之一:认识JAVA数组
    java提高篇(十七)-----异常(二)
    java提高篇(十六)-----异常(一)
    jQuery读取和设定KindEditor的值
  • 原文地址:https://www.cnblogs.com/Enumz/p/3865703.html
Copyright © 2011-2022 走看看