zoukankan      html  css  js  c++  java
  • Lotto--poj2245

    Lotto
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6605   Accepted: 4185

    Description

    In the German Lotto you have to select 6 numbers from the set {1,2,...,49}. A popular strategy to play Lotto - although it doesn't increase your chance of winning - is to select a subset S containing k (k > 6) of these 49 numbers, and then play several games with choosing numbers only from S. For example, for k=8 and S = {1,2,3,5,8,13,21,34} there are 28 possible games: [1,2,3,5,8,13], [1,2,3,5,8,21], [1,2,3,5,8,34], [1,2,3,5,13,21], ... [3,5,8,13,21,34]. 

    Your job is to write a program that reads in the number k and the set S and then prints all possible games choosing numbers only from S. 

    Input

    The input will contain one or more test cases. Each test case consists of one line containing several integers separated from each other by spaces. The first integer on the line will be the number k (6 < k < 13). Then k integers, specifying the set S, will follow in ascending order. Input will be terminated by a value of zero (0) for k.

    Output

    For each test case, print all possible games, each game on one line. The numbers of each game have to be sorted in ascending order and separated from each other by exactly one space. The games themselves have to be sorted lexicographically, that means sorted by the lowest number first, then by the second lowest and so on, as demonstrated in the sample output below. The test cases have to be separated from each other by exactly one blank line. Do not put a blank line after the last test case.

    Sample Input

    7 1 2 3 4 5 6 7
    8 1 2 3 5 8 13 21 34
    0
    

    Sample Output

    1 2 3 4 5 6
    1 2 3 4 5 7
    1 2 3 4 6 7
    1 2 3 5 6 7
    1 2 4 5 6 7
    1 3 4 5 6 7
    2 3 4 5 6 7
    
    1 2 3 5 8 13
    1 2 3 5 8 21
    1 2 3 5 8 34
    1 2 3 5 13 21
    1 2 3 5 13 34
    1 2 3 5 21 34
    1 2 3 8 13 21
    1 2 3 8 13 34
    1 2 3 8 21 34
    1 2 3 13 21 34
    1 2 5 8 13 21
    1 2 5 8 13 34
    1 2 5 8 21 34
    1 2 5 13 21 34
    1 2 8 13 21 34
    1 3 5 8 13 21
    1 3 5 8 13 34
    1 3 5 8 21 34
    1 3 5 13 21 34
    1 3 8 13 21 34
    1 5 8 13 21 34
    2 3 5 8 13 21
    2 3 5 8 13 34
    2 3 5 8 21 34
    2 3 5 13 21 34
    2 3 8 13 21 34
    2 5 8 13 21 34
    3 5 8 13 21 34


     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 using namespace std;
     5 int a[15],b[7],n;
     6 
     7 void dfs(int num,int p)
     8 {
     9     int i;
    10     if(p>n)
    11     return ;
    12     if(num>=6)
    13     {
    14         for(i=0;i<5;i++)
    15         printf("%d ",b[i]);
    16         printf("%d
    ",b[5]);
    17         return ;
    18     }
    19     b[num]=a[p];
    20     dfs(num+1,p+1);
    21     dfs(num,p+1);
    22     return;
    23 }
    24 int main()
    25 {
    26     int i,flag=0;
    27     while(scanf("%d",&n),n)
    28     {
    29         if(flag)
    30         printf("
    ");
    31         flag=1;
    32         for(i=0;i<n;i++)
    33         scanf("%d",&a[i]);
    34         
    35         dfs(0,0);
    36     }
    37     
    38 }


  • 相关阅读:
    软件构造 第七章第三节 断言和防御性编程
    软件构造 第七章第二节 错误与异常处理
    软件构造 第七章第一节 健壮性和正确性的区别
    软件构造 第六章第三节 面向可维护的构造技术
    软件构造 第六章第二节 可维护的设计模式
    欧拉函数代码实现及扩展--快速矩阵幂
    编译原理
    算法设计与分析总结
    人工智能简答总结
    感想
  • 原文地址:https://www.cnblogs.com/Eric-keke/p/4705889.html
Copyright © 2011-2022 走看看