zoukankan      html  css  js  c++  java
  • 【分类器】感知机+线性回归+逻辑斯蒂回归+softmax回归

    一、感知机

        详细参考:https://blog.csdn.net/wodeai1235/article/details/54755735

        1.模型和图像:

       

         2.数学定义推导和优化:

         

          

           

         3.流程

         

    二、线性回归

         1.定义及解析解:

        

           a=(XTX) -1 XTy,如加2范数约束则解析解为a=(XTX+λI) -1 XTy

          2.总结:

            速度快,对异常值敏感。可以采用梯度下降法。

    三、逻辑斯蒂回归

         1.sigmod

         https://www.cnblogs.com/EstherLjy/p/9343487.html

         2.概述:

          LR是一种二分类算法,直接对分类的可能性进行建模,无需事先假设数据分布,避免了假设不准确带来的问题。不仅能预测出类别,还能预测出该类别的概率。是一种针对线性可分问题的性能优异的模型。LR回归是在线性回归模型的基础上,使用sigmoid函数,将线性模型 wTx的结果压缩到[0,1] 之间,使其拥有概率意义。

        3.推导:

         α=sigmod(α) 是预测值,y是gt

          

       

       

       L(w)的导数为∑(yi-αi)xi

       然后用梯度下降法求解。

       4.逻辑斯蒂回归和线性分类器对比

        y的取值范围不同,线性是正负无穷,逻辑斯蒂是0-1;

        逻辑斯蒂更符合实际,一般x很大或很小时对y影响不大,中间影响很大。

        线性回归是根据样本X各个维度的Xi的线性叠加得到预测值的Y,然后最小化所有的样本预测值Y与真实值y'的误差来求得模型参数,是线性的。在logistic回归中,X各维度叠加和与Y不是线性关系,而是logistic关系。

    四、softmax回归

       1.概述:

       是对LR在多分类上的一种扩展,损失函数为:

      

          LR的损失为:

        

       2.适用情况:

       softmax与LR的one VS all并不完全相同,区别在于加起来是否等于1.

       使用softmax:k个类是互斥的。

       使用n个二分类的LR:k个类不互斥。

       3.参考:

        https://blog.csdn.net/zhangliyao22/article/details/48379291

        https://www.cnblogs.com/lianyingteng/p/7784158.html

      

  • 相关阅读:
    .net 日期格式化
    grunt 上手
    设计模式的认识
    顺时针打印矩阵
    WCF 框架运行时类图
    Python闭包详解
    软件用了那些技术
    zoj 1610 Count the Colors(线段树延迟更新)
    快速提高自己的技术的办法?有两个方法
    纯win32实现PNG图片透明窗体
  • 原文地址:https://www.cnblogs.com/EstherLjy/p/9343616.html
Copyright © 2011-2022 走看看