zoukankan      html  css  js  c++  java
  • python——进程基础

      我们现在都知道python的多线程是个坑了,那么多进程在这个时候就变得很必要了。多进程实现了多CPU的利用,效率简直棒棒哒~~~

    拥有一个多进程程序:

      

     1 #!/usr/bin/env python
     2 #-*-coding:utf-8-*-
     3 __author__ = 'Eva_J'
     4 import multiprocessing
     5 import time
     6 
     7 def func(msg):
     8     for i in range(3):
     9         print msg
    10         time.sleep(1)
    11 
    12 if __name__ == "__main__":
    13     p = multiprocessing.Process(target=func, args=("hello", ))
    14     p.start()
    15     p.join()
    16     print "have done."
    multiprocess Code 1

      按照上面的方法,我们就在自己的代码中启动了一个子进程,需要注意的是要想启动一个子进程,必须加上那句if __name__ == "main",否则就会报错。 查看了官方文档说:Safe importing of main module,Make sure that the main module can be safely imported by a new Python interpreter without causing unintended side effects (such a starting a new process).大概就是说,如果我们必须确定当前已经引入了主模块,来避免一些非预期的副作用。。。总之,加上!就对了!!!
    进程池:

      

     1 #!/usr/bin/env python
     2 #-*-coding:utf-8-*-
     3 __author__ = 'Eva_J'
     4 def func(msg):
     5     print msg,'*** in func'
     6     time.sleep(3)
     7 
     8 if __name__ == "__main__":
     9     #
    10     pool = multiprocessing.Pool(processes=5)
    11     for i in xrange(3):
    12         print i
    13         pool.apply_async(func, ("hello %d" %(i), ))
    14         #pool.apply(func, ("hello %d" %(i), ))
    15     pool.close()
    16     #pool.terminate() #结束工作进程,不在处理未完成的任务
    17     pool.join() #主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用
    18     print "have done."
    multiprocessing Pool Code

      上图中的方法就是进程池的使用,这里重点的介绍一些进程池相关的方法。

      首先,我们为进程注入func,有两种方式:apply_async表示异步,就是子进程接收到请求之后就各自去执行了,而apply表示同步,子进程们将一个一个的执行,后一个子进程的执行永远以前一个子进程的结束为信号,开始执行。还是吃饭的例子。。。异步就是当我通知子进程要去吃饭的时候,他们就同时去吃饭了,同步就是他们必须一个一个的去,前一个没回来,后一个就不能去。

      close方法:说关闭进程池,至此,进程池中不在有进程可以接受任务。

      terminate和join是一对方法,表示的内容截然相反,执行terminate是结束当前进程池中的所有进程,不管值没执行完。join方法是阻塞主进程,等待子进程执行完毕,再继续执行主进程。需要注意的是:这两个方法都必须在close方法之后执行。当然我们也可以不执行这两个方法,那么子进程和主进程就各自执行各自的,无论执行到哪里,子进程会随着主进程的结束而结束。。。

    获取进程池中进程的执行结果:

      

     1 #!/usr/bin/env python
     2 #-*-coding:utf-8-*-
     3 __author__ = 'Eva_J'
     4 import multiprocessing
     5 import time
     6 
     7 def func(msg):
     8     print "msg : ", msg
     9     time.sleep(3)
    10     print "end"
    11     return "multi_result : " + msg
    12 
    13 if __name__ == "__main__":
    14     pool = multiprocessing.Pool(processes=4)
    15     result = []
    16     for i in xrange(3):
    17         msg = "hello %d" %(i)
    18         multi_result = pool.apply_async(func, (msg, ))
    19         result.append(multi_result)
    20     pool.close()
    21     pool.join()
    22     for res in result:
    23         print res.get()
    24     print "have done."
    multiprocessing get result example Code

      没啥好说的,区别在黄框框里,自取不谢~~~

    进程之间的内存共享:

      我们之前说过,正常情况下,每个进程都拥有自己的内存空间,因此进程间的内存是无法共享的。

       但是python却提供了我们方法,让我们程序的子进程之间实现简单的数据共享。

      一个是Array数组,一个是multiprocessing模块中的Manager类。需要注意的是,Array数组的大小必须固定,Manager需要在linux系统下运行。代码在下面啦!!

     1 #!/usr/bin/env python
     2 #-*-coding:utf-8-*-
     3 __author__ = 'Eva_J'
     4 #方法一,Array
     5 from multiprocessing import Process,Array
     6 temp = Array('i', [11,22,33,44])
     7 
     8 def Foo(i):
     9     temp[i] = 100+i
    10     for item in temp:
    11         print i,'----->',item
    12 
    13 for i in range(2):
    14     p = Process(target=Foo,args=(i,))
    15     p.start()  
    Array Code
     1 #!/usr/bin/env python
     2 #-*-coding:utf-8-*-
     3 __author__ = 'Eva_J'
     4 #方法二:manage.dict()共享数据
     5 from multiprocessing import Process,Manager
     6 
     7 manage = Manager()
     8 
     9 dic = manage.dict()
    10 
    11 def Foo(i):
    12     dic[i] = 100+i
    13     print dic.values()
    14 
    15 if __name__ == "__main__":
    16     for i in range(2):
    17         p = Process(target=Foo,args=(i,))
    18         p.start()
    19         p.join()
    Manager dict Code

    参考文献:

        python进程池:http://www.cnblogs.com/kaituorensheng/p/4465768.html

        python多进程的使用示例:http://outofmemory.cn/code-snippet/2267/Python-duojincheng-multiprocessing-usage-example

          python的线程、进程和协程:http://www.cnblogs.com/wupeiqi/articles/5040827.html  

        python的内存共享:http://www.cnblogs.com/dkblog/archive/2011/03/14/1983250.html

        python的多进程编程:http://www.cnblogs.com/kaituorensheng/p/4445418.html  

  • 相关阅读:
    Redis学习之有序集合类型
    Redis学习之set类型总结
    Redis学习之List类型总结
    Redis学习之哈希类型总结
    Redis学习之字符串
    3、mysql学习之数据库定义语句
    2、mysql学习之创建用户与授权方法
    1、mysql学习之密码丢失恢复
    6、MongoDB学习之主从复制
    5、MongoDB学习之安全与认证
  • 原文地址:https://www.cnblogs.com/Eva-J/p/5110844.html
Copyright © 2011-2022 走看看