zoukankan      html  css  js  c++  java
  • Intersecting Lines(叉积,方程)

    Intersecting Lines

    http://poj.org/problem?id=1269

    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 18897   Accepted: 8043

    Description

    We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
    Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

    Input

    The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

    Output

    There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

    Sample Input

    5
    0 0 4 4 0 4 4 0
    5 0 7 6 1 0 2 3
    5 0 7 6 3 -6 4 -3
    2 0 2 27 1 5 18 5
    0 3 4 0 1 2 2 5
    

    Sample Output

    INTERSECTING LINES OUTPUT
    POINT 2.00 2.00
    NONE
    LINE
    POINT 2.00 5.00
    POINT 1.07 2.20
    END OF OUTPUT

    先判断是否平行,平行的话再判断是否共线,否则把向量转换成方程,计算交点

    直线的一般式方程AX+BY+C=0中,A B C分别等于:
    A = Y2 - Y1
    B = X1 - X2
    C = X2*Y1 - X1*Y2
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<string>
     6 #include<algorithm>
     7 #include<queue>
     8 #include<vector>
     9 #define esp 0.00000001
    10 using namespace std;
    11 
    12 struct Vector{
    13     double x,y;
    14 };
    15 
    16 struct Line{
    17     Vector s,e;
    18 }line[35];
    19 
    20 double Cross(Vector a,Vector b,Vector c){
    21     return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
    22 }
    23 
    24 
    25 int main(){
    26     int n;
    27     cin>>n;
    28     Vector a,b,c,d;
    29     double tmp;
    30     cout<<"INTERSECTING LINES OUTPUT"<<endl;
    31     for(int i=1;i<=n;i++){
    32         cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y>>d.x>>d.y;
    33         tmp=(a.x-b.x)*(c.y-d.y)-(a.y-b.y)*(c.x-d.x);
    34         if(fabs(tmp)<esp&&fabs(Cross(a,b,d))<esp){
    35             cout<<"LINE"<<endl;
    36         }
    37         else if(fabs(tmp)<esp){
    38             cout<<"NONE"<<endl;
    39         }
    40         else{
    41             double a1=a.y-b.y,b1=b.x-a.x,c1=a.x*b.y-b.x*a.y;//c是叉积
    42             double a2=c.y-d.y,b2=d.x-c.x,c2=c.x*d.y-d.x*c.y;
    43             double x=(c2*b1-c1*b2)/(b2*a1-b1*a2);
    44             double y=(a2*c1-a1*c2)/(b2*a1-b1*a2);
    45             printf("POINT %.2f %.2f
    ",x,y);
    46         }
    47     }
    48     cout<<"END OF OUTPUT"<<endl;
    49 }
    View Code
  • 相关阅读:
    【科创人上海行】扶墙老师王福强:架构师创业要突破思维局限,技术人创业的三种模式,健康第一
    【科创人·独家】连续创业者高春辉的这六年:高强度投入打造全球领先的IP数据库
    中国确实需要大力扩充核武器
    SAP MM 可以通过STO在公司间转移质检库存?
    SAP MM 如何看一个采购申请是由APO系统创建后同步过来的?
    SAP MM 如何看一个Inbound Delivery单据相关的IDoc?
    SAP ECC & APO集成
    SAP MM 采购订单收货之后自动形成分包商库存?
    SAP MM 带有'Return'标记的STO,不能创建内向交货单?
    SAP MM 没有启用QM的前提下可以从QI库存里退货给Vendor?
  • 原文地址:https://www.cnblogs.com/Fighting-sh/p/9812928.html
Copyright © 2011-2022 走看看