zoukankan      html  css  js  c++  java
  • Day7

    Chiaki has an n × m matrix A. Rows are numbered from 1 to n from top to bottom and columns are numbered from 1 to m from left to right. The element in the i-th row and the j-th column is Aij.

    Let M({i1, i2, ..., is}, {j1, j2, ..., jt}) be the matrix that results from deleting row i1, i2, ..., is and column j1, j2, ..., jt of A and f({i1, i2, ..., is}, {j1, j2, ..., jt}) be the number of saddle points in matrix M({i1, i2, ..., is}, {j1, j2, ..., jt}).

    Chiaki would like to find all the value of f({i1, i2, ..., is}, {j1, j2, ..., jt}). As the output may be very large ((2n - 1)(2m - 1) matrix in total), she is only interested in the value

    $$left(sum_{egin{array}{r} 1 le i_1 < dots < i_s le n \ 1 le j_1 < dots < j_t le m \ 0 le s < n \ 0 le t < mend{array}} f({i_1,i_2,dots,i_s},{j_1,j_2,dots,j_t})
ight) mod (10^9+7).$$

    Note that a saddle point of a matrix is an element which is both the only largest element in its column and the only smallest element in its row.

    Input

    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

    The first line contains four integers n and m (1 ≤ nm ≤ 1000) -- the number of rows and the number of columns.

    Each of the next n lines contains m integer Ai, 1, Ai, 2, ..., Aim (1 ≤ Aij ≤ 106), where Aij is the integer in the i-th row and the j-th column.

    It is guaranteed that neither the sum of all n nor the sum of all m exceeds 5000.

    Output

    For each test case, output an integer denoting the answer.

    Sample Input

    2
    2 2
    1 1
    1 1
    4 5
    1 2 3 4 5
    6 7 8 9 10
    11 12 13 14 15
    16 17 18 19 20
    

    Sample Output

    4
    465

    思路:saddle点的定义是行最小,列最大,那么我们就统计每一个点对saddle点的贡献,即这些点是saddle点的时候,去掉当前行比他大的列与当前列比他小的行对该点的贡献无影响,即是组合数从0到x,就是2^x,列同理,就是2^(x+y),快速幂+二分查找即可
    typedef long long LL;
    
    const int MOD = 1e9+7;
    const int maxm = 1005;
    
    int A[maxm][maxm], R[maxm][maxm], C[maxm][maxm];
    
    LL quick_pow(LL a, LL b) {
        LL ret = 1;
        while(b) {
            if(b & 1) ret = (ret * a) % MOD;
            a = (a * a) % MOD;
            b >>= 1;
        }
        return ret;
    }
    
    int main() {
        int T, n, m;
        scanf("%d", &T);
        while(T--) {
            scanf("%d%d", &n, &m);
            for(int i = 1; i <= n; ++i)
                for(int j = 1; j <= m; ++j) {
                    scanf("%d", &A[i][j]);
                    R[i][j] = C[j][i] = A[i][j];
                }
            for(int i = 1; i <= n; ++i)
                sort(R[i]+1, R[i]+m+1);
            for(int i = 1; i <= m; ++i)
                sort(C[i]+1, C[i]+1+n);
                    
            LL ans = 0;
            int row, col;
            for(int i = 1; i <= n; ++i) {
                for(int j = 1; j <= m; ++j) {
                    row = m-(upper_bound(R[i]+1, R[i]+1+m, A[i][j]) - R[i] - 1); // larger than A[i][j] in row
                    col = lower_bound(C[j]+1, C[j]+1+n, A[i][j]) - C[j] - 1; // lower than A[i][j] in column
                    ans = (ans+quick_pow(2, col+row))%MOD;
                }
            }
            printf("%lld
    ", ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    万兆铜缆--七类双绞线--光纤等内容
    [51CTO]反客为主 ,Linux 成为微软 Azure 上最流行的操作系统
    [知乎]超线程对游戏来说真的没用吗?
    SQLSERVER2017 最新补丁发布方式
    MSTSC 修改端口的简单方法 3389
    使用WinSW 将 exe 创建成Windows下面 service的方法 (将nginx创建成 services)
    [时政]在美国,是参议院议长的权力大,还是众议院议长的权力大
    内网内使用https 和 使用http 建立连接的速度对比
    Windows下 OpenSSL的安装与简单使用
    [转发]VMware厚置备延迟置零 、 厚置备置零、精简置备 区别
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/12219315.html
Copyright © 2011-2022 走看看