zoukankan      html  css  js  c++  java
  • poj 2002 Squares

    题目连接

    http://poj.org/problem?id=2002  

    Squares

    Description

    A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-degree angles. It is also a polygon such that rotating about its centre by 90 degrees gives the same polygon. It is not the only polygon with the latter property, however, as a regular octagon also has this property. 

    So we all know what a square looks like, but can we find all possible squares that can be formed from a set of stars in a night sky? To make the problem easier, we will assume that the night sky is a 2-dimensional plane, and each star is specified by its x and y coordinates. 

    Input

    The input consists of a number of test cases. Each test case starts with the integer n (1 <= n <= 1000) indicating the number of points to follow. Each of the next n lines specify the x and y coordinates (two integers) of each point. You may assume that the points are distinct and the magnitudes of the coordinates are less than 20000. The input is terminated when n = 0.

    Output

    For each test case, print on a line the number of squares one can form from the given stars.

    Sample Input

    4
    1 0
    0 1
    1 1
    0 0
    9
    0 0
    1 0
    2 0
    0 2
    1 2
    2 2
    0 1
    1 1
    2 1
    4
    -2 5
    3 7
    0 0
    5 2
    0

    Sample Output

    1
    6
    1

    题意:给出一些点的集合求能组成正方形的个数。
    思路:直接枚举的话$n = 1000 O(n^4)$ 会超时。考虑换个思路:已知两个点,由正方形的几何特性
    求出另外两个点的坐标,判断是否在点的集合里(哈希,二分,set。。。)都可我用的哈希。
    具体先对所有的点按横坐标,纵坐标从小到大排序。统计个数$tot$,最后的答案即为${tot/2}$(正方形的对称性)
    那么问题来了,如何已知两个点,求另外两个点呢?
    现在给出公式:记$A(x_1,y_1) B(x_2,y_2) overrightarrow {AB} =(x_2-x_1,y_2-y_1)$
    另外两个点$C(x_3, y_3) D(x_4,y_4) $
    $C: x_3 = y_1 - y_2 + x_1 y_3 = x_2 - x_1 + y_1 $
    $D: x_4= y_1 - y_2 + x_2 y_4 = x_2 - x_1 + y_2 $
    证明其实很简单记$overrightarrow{X} = (a,b)$逆时针旋转$eta$度得到$overrightarrow{Y}(x,y)$
    有:$x = acoseta-bsineta y = asineta+bcoseta$ (由三角函数的几何意义易得)
    那么$overrightarrow {AC} = (x_3-x_1,y_3-y_1)$
    $x_3-x_1=(x_2-x_1)coseta - (y_2-y_1)sineta$
    $y_3-y_1=(x_2-x_1)sineta + (y_2-y_1)coseta$ 其中$eta = 90^0$
    所以$x_3 = y_1-y_2+x_1 y_3=x_2-x_1+y_1$
    $overrightarrow {BD}$同理(注意向量的方向和旋转方向)
    原谅我孱弱的语文水平写的太挫了凑合看吧/(ㄒoㄒ)/~~

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<map>
    using std::map;
    using std::abs;
    using std::sort;
    using std::pair;
    using std::vector;
    using std::multimap;
    #define pb(e) push_back(e)
    #define sz(c) (int)(c).size()
    #define mp(a, b) make_pair(a, b)
    #define all(c) (c).begin(), (c).end()
    #define iter(c) __typeof((c).begin())
    #define cls(arr, val) memset(arr, val, sizeof(arr))
    #define cpresent(c, e) (find(all(c), (e)) != (c).end())
    #define rep(i, n) for(int i = 0; i < (int)n; i++)
    #define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
    const int N = 40007;
    const int INF = 0x3f3f3f3f;
    struct P {
        int x, y;
        P() {}
        P(int i , int j) :x(i), y(j) {}
        inline bool operator<(const P &k) const {
            return x == k.x ? y < k.y : x < k.x;
        }
    }A[N];
    struct Hash_Set {
        int tot, head[N];
        struct edge { int x, y, next; }G[N];
        inline void init() {
            tot = 0, cls(head, -1);
        }
        inline void insert(P &k) {
            int u = abs(k.x + k.y) % N;
            G[tot] = (edge){ k.x, k.y, head[u] }; head[u] = tot++;
        }
        inline bool find(P k) {
            int u = abs(k.x + k.y) % N;
            for(int i = head[u]; ~i; i = G[i].next) {
                edge &e = G[i];
                if(k.x == e.x && k.y == e.y) return true;
            }
            return false;
        }
    }hash;
    int main() {
    #ifdef LOCAL
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w+", stdout);
    #endif
        int n, x1, x2, x3, x4, y1, y2, y3, y4, ans;
        while(~scanf("%d", &n), n) {
            hash.init();
            rep(i, n) {
                scanf("%d %d", &A[i].x, &A[i].y);
                hash.insert(A[i]);
            }
            sort(A, A + n);
            ans = 0;
            for(int i = 0; i < n; i++) {
                for(int j = i + 1; j < n; j++) {
                    x1 = A[i].x, y1 = A[i].y;
                    x2 = A[j].x, y2 = A[j].y;
                    x3 = y1 - y2 + x1, y3 = x2 - x1 + y1;
                    x4 = y1 - y2 + x2, y4 = x2 - x1 + y2;
                    if(hash.find(P(x3, y3)) && hash.find(P(x4, y4))) ans++;
                }
            }
            printf("%d
    ", ans >> 1);
        }
        return 0;
    }
  • 相关阅读:
    当开发者产生一个伟大的想法之后应该做的10件事
    PUT 还是 POST ?
    Failed to issue method call: Unit mysqld.service failed to load: No such file or directory.
    使用 Protocol Buffers 代替 JSON 的五个原因
    Java 打印堆栈的几种方法
    Eclipse调试Java的10个技巧
    如何使用命令查看系统名称?
    Feed系统架构资料收集
    dcm4chee 修改默认(0002,0013) ImplementationVersionName
    【原创】分布式之数据库和缓存双写一致性方案解析
  • 原文地址:https://www.cnblogs.com/GadyPu/p/4776659.html
Copyright © 2011-2022 走看看