前言
对于一个字符串、列表、类甚至数值都是对象,且定位简单易用的语言,自然不会让用户去处理如何分配回收内存的问题。
python里也同java一样采用了垃圾收集机制,不过不一样的是:
python采用的是
引用计数机制为主,标记-清除和分代收集两种机制为辅的策略1. 白话垃圾回收
用通俗的语言解释内存管理和垃圾回收的过程,搞懂这一部分就可以去面试、去装逼了…
1.1 大管家refchain
在Python的C源码中有一个名为refchain的环状双向链表,这个链表比较牛逼了,因为Python程序中一旦创建对象都会把这个对象添加到refchain这个链表中。也就是说他保存着所有的对象。例如:
age = 18name = "武沛齐"

1.2 引用计数器
在refchain中的所有对象内部都有一个ob_refcnt用来保存当前对象的引用计数器,顾名思义就是自己被引用的次数,例如:
age = 18name = "武沛齐"nickname = name
上述代码表示内存中有 18 和 “武沛齐” 两个值,他们的引用计数器分别为:1、2 。
当值被多次引用时候,不会在内存中重复创建数据,而是引用计数器+1 。 当对象被销毁时候同时会让引用计数器-1,如果引用计数器为0,则将对象从refchain链表中摘除,同时在内存中进行销毁(暂不考虑缓存等特殊情况)。
age = 18number = age # 对象18的引用计数器 + 1del age # 对象18的引用计数器 - 1def run(arg):print(arg)run(number) # 刚开始执行函数时,对象18引用计数器 + 1,当函数执行完毕之后,对象18引用计数器 - 1 。num_list = [11,22,number] # 对象18的引用计数器 + 1
1.3 标记清除&分代回收
基于引用计数器进行垃圾回收非常方便和简单,但他还是存在循环引用的问题,导致无法正常的回收一些数据,例如:
v1 = [11,22,33] # refchain中创建一个列表对象,由于v1=对象,所以列表引对象用计数器为1.v2 = [44,55,66] # refchain中再创建一个列表对象,因v2=对象,所以列表对象引用计数器为1.v1.append(v2) # 把v2追加到v1中,则v2对应的[44,55,66]对象的引用计数器加1,最终为2.v2.append(v1) # 把v1追加到v1中,则v1对应的[11,22,33]对象的引用计数器加1,最终为2.del v1 # 引用计数器-1del v2 # 引用计数器-1
对于上述代码会发现,执行del操作之后,没有变量再会去使用那两个列表对象,但由于循环引用的问题,他们的引用计数器不为0,所以他们的状态:永远不会被使用、也不会被销毁。项目中如果这种代码太多,就会导致内存一直被消耗,直到内存被耗尽,程序崩溃。
为了解决循环引用的问题,引入了标记清除技术,专门针对那些可能存在循环引用的对象进行特殊处理,可能存在循环应用的类型有:列表、元组、字典、集合、自定义类等那些能进行数据嵌套的类型。
标记清除:创建特殊链表专门用于保存 列表、元组、字典、集合、自定义类等对象,之后再去检查这个链表中的对象是否存在循环引用,如果存在则让双方的引用计数器均 - 1 。
分代回收:对标记清除中的链表进行优化,将那些可能存在循引用的对象拆分到3个链表,链表称为:0/1/2三代,每代都可以存储对象和阈值,当达到阈值时,就会对相应的链表中的每个对象做一次扫描,除循环引用各自减1并且销毁引用计数器为0的对象。
// 分代的C源码#define NUM_GENERATIONS 3struct gc_generation generations[NUM_GENERATIONS] = {/* PyGC_Head, threshold, count */{{(uintptr_t)_GEN_HEAD(0), (uintptr_t)_GEN_HEAD(0)}, 700, 0}, // 0代{{(uintptr_t)_GEN_HEAD(1), (uintptr_t)_GEN_HEAD(1)}, 10, 0}, // 1代{{(uintptr_t)_GEN_HEAD(2), (uintptr_t)_GEN_HEAD(2)}, 10, 0}, // 2代};
特别注意:0代和1、2代的threshold和count表示的意义不同。
- 0代,count表示0代链表中对象的数量,threshold表示0代链表对象个数阈值,超过则执行一次0代扫描检查。
- 1代,count表示0代链表扫描的次数,threshold表示0代链表扫描的次数阈值,超过则执行一次1代扫描检查。
- 2代,count表示1代链表扫描的次数,threshold表示1代链表扫描的次数阈值,超过则执行一2代扫描检查。
1.4 情景模拟
根据C语言底层并结合图来讲解内存管理和垃圾回收的详细过程。
第一步:当创建对象age=19时,会将对象添加到refchain链表中。

第二步:当创建对象num_list = [11,22]时,会将列表对象添加到 refchain 和 generations 0代中。

第三步:新创建对象使generations的0代链表上的对象数量大于阈值700时,要对链表上的对象进行扫描检查。
当0代大于阈值后,底层不是直接扫描0代,而是先判断2、1是否也超过了阈值。
- 如果2、1代未达到阈值,则扫描0代,并让1代的 count + 1 。
- 如果2代已达到阈值,则将2、1、0三个链表拼接起来进行全扫描,并将2、1、0代的count重置为0.
- 如果1代已达到阈值,则讲1、0两个链表拼接起来进行扫描,并将所有1、0代的count重置为0.
对拼接起来的链表在进行扫描时,主要就是剔除循环引用和销毁垃圾,详细过程为:
- 扫描链表,把每个对象的引用计数器拷贝一份并保存到
gc_refs中,保护原引用计数器。 - 再次扫描链表中的每个对象,并检查是否存在循环引用,如果存在则让各自的
gc_refs减 1 。 - 再次扫描链表,将
gc_refs为 0 的对象移动到unreachable链表中;不为0的对象直接升级到下一代链表中。 - 处理
unreachable链表中的对象的 析构函数 和 弱引用,不能被销毁的对象升级到下一代链表,能销毁的保留在此链表。- 析构函数,指的就是那些定义了
__del__方法的对象,需要执行之后再进行销毁处理。 - 弱引用,
- 析构函数,指的就是那些定义了
- 最后将
unreachable中的每个对象销毁并在refchain链表中移除(不考虑缓存机制)。
至此,垃圾回收的过程结束。
1.5 缓存机制
从上文大家可以了解到当对象的引用计数器为0时,就会被销毁并释放内存。而实际上他不是这么的简单粗暴,因为反复的创建和销毁会使程序的执行效率变低。Python中引入了“缓存机制”机制。
例如:引用计数器为0时,不会真正销毁对象,而是将他放到一个名为 free_list 的链表中,之后会再创建对象时不会在重新开辟内存,而是在free_list中将之前的对象来并重置内部的值来使用。
-
float类型,维护的free_list链表最多可缓存100个float对象。
v1 = 3.14 # 开辟内存来存储float对象,并将对象添加到refchain链表。print( id(v1) ) # 内存地址:4436033488del v1 # 引用计数器-1,如果为0则在rechain链表中移除,不销毁对象,而是将对象添加到float的free_list.v2 = 9.999 # 优先去free_list中获取对象,并重置为9.999,如果free_list为空才重新开辟内存。print( id(v2) ) # 内存地址:4436033488# 注意:引用计数器为0时,会先判断free_list中缓存个数是否满了,未满则将对象缓存,已满则直接将对象销毁。
-
int类型,不是基于free_list,而是维护一个small_ints链表保存常见数据(小数据池),小数据池范围:
-5 <= value < 257。即:重复使用这个范围的整数时,不会重新开辟内存。v1 = 38 # 去小数据池small_ints中获取38整数对象,将对象添加到refchain并让引用计数器+1。print( id(v1)) #内存地址:4514343712v2 = 38 # 去小数据池small_ints中获取38整数对象,将refchain中的对象的引用计数器+1。print( id(v2) ) #内存地址:4514343712# 注意:在解释器启动时候-5~256就已经被加入到small_ints链表中且引用计数器初始化为1,代码中使用的值时直接去small_ints中拿来用并将引用计数器+1即可。另外,small_ints中的数据引用计数器永远不会为0(初始化时就设置为1了),所以也不会被销毁。
-
str类型,维护
unicode_latin1[256]链表,内部将所有的ascii字符缓存起来,以后使用时就不再反复创建。v1 = "A"print( id(v1) ) # 输出:4517720496del v1v2 = "A"print( id(v1) ) # 输出:4517720496# 除此之外,Python内部还对字符串做了驻留机制,针对那么只含有字母、数字、下划线的字符串(见源码Objects/codeobject.c),如果内存中已存在则不会重新在创建而是使用原来的地址里(不会像free_list那样一直在内存存活,只有内存中有才能被重复利用)。v1 = "wupeiqi"v2 = "wupeiqi"print(id(v1) == id(v2)) # 输出:True
- list类型,维护的free_list数组最多可缓存80个list对象。
v1 = [11,22,33]print( id(v1) ) # 输出:4517628816del v1v2 = ["武","沛齐"]print( id(v2) ) # 输出:4517628816
- tuple类型,维护一个free_list数组且数组容量20,数组中元素可以是链表且每个链表最多可以容纳2000个元组对象。元组的free_list数组在存储数据时,是按照元组可以容纳的个数为索引找到free_list数组中对应的链表,并添加到链表中。
v1 = (1,2)print( id(v1) )del v1 # 因元组的数量为2,所以会把这个对象缓存到free_list[2]的链表中。v2 = ("武沛齐","Alex") # 不会重新开辟内存,而是去free_list[2]对应的链表中拿到一个对象来使用。print( id(v2) )
- dict类型,维护的free_list数组最多可缓存80个dict对象。
v1 = {"k1":123}print( id(v1) ) # 输出:4515998128del v1v2 = {"name":"武沛齐","age":18,"gender":"男"}print( id(v1) ) # 输出:4515998128
2. C语言源码分析
上文对Python的内存管理和垃圾回收进行了快速讲解,基本上已可以让你拿去装逼了。
接下来这一部分会让你更超神,我们要再在源码中来证实上文的内容。
2.1 两个重要的结构体
#define PyObject_HEAD PyObject ob_base;#define PyObject_VAR_HEAD PyVarObject ob_base;// 宏定义,包含 上一个、下一个,用于构造双向链表用。(放到refchain链表中时,要用到)#define _PyObject_HEAD_EXTRAstruct _object *_ob_next;struct _object *_ob_prev;typedef struct _object {_PyObject_HEAD_EXTRA // 用于构造双向链表Py_ssize_t ob_refcnt; // 引用计数器struct _typeobject *ob_type; // 数据类型} PyObject;typedef struct {PyObject ob_base; // PyObject对象Py_ssize_t ob_size; /* Number of items in variable part,即:元素个数 */} PyVarObject;
这两个结构体PyObject和PyVarObject是基石,他们保存这其他数据类型公共部分,例如:每个类型的对象在创建时都有PyObject中的那4部分数据;list/set/tuple等由多个元素组成对象创建时都有PyVarObject中的那5部分数据。
2.2 常见类型结构体
平时我们在创建一个对象时,本质上就是实例化一个相关类型的结构体,在内部保存值和引用计数器等。
- float类型
typedef struct {PyObject_HEADdouble ob_fval;} PyFloatObject;
- int类型
struct _longobject {PyObject_VAR_HEADdigit ob_digit[1];};/* Long (arbitrary precision) integer object interface */typedef struct _longobject PyLongObject; /* Revealed in longintrepr.h */
-
str类型
typedef struct {PyObject_HEADPy_ssize_t length; /* Number of code points in the string */Py_hash_t hash; /* Hash value; -1 if not set */struct {unsigned int interned:2;/* Character size:- PyUnicode_WCHAR_KIND (0):* character type = wchar_t (16 or 32 bits, depending on theplatform)- PyUnicode_1BYTE_KIND (1):* character type = Py_UCS1 (8 bits, unsigned)* all characters are in the range U+0000-U+00FF (latin1)* if ascii is set, all characters are in the range U+0000-U+007F(ASCII), otherwise at least one character is in the rangeU+0080-U+00FF- PyUnicode_2BYTE_KIND (2):* character type = Py_UCS2 (16 bits, unsigned)* all characters are in the range U+0000-U+FFFF (BMP)* at least one character is in the range U+0100-U+FFFF- PyUnicode_4BYTE_KIND (4):* character type = Py_UCS4 (32 bits, unsigned)* all characters are in the range U+0000-U+10FFFF* at least one character is in the range U+10000-U+10FFFF*/unsigned int kind:3;unsigned int compact:1;unsigned int ascii:1;unsigned int ready:1;unsigned int :24;} state;wchar_t *wstr; /* wchar_t representation (null-terminated) */} PyASCIIObject;typedef struct {PyASCIIObject _base;Py_ssize_t utf8_length; /* Number of bytes in utf8, excluding the* terminating . */char *utf8; /* UTF-8 representation (null-terminated) */Py_ssize_t wstr_length; /* Number of code points in wstr, possible* surrogates count as two code points. */} PyCompactUnicodeObject;typedef struct {PyCompactUnicodeObject _base;union {void *any;Py_UCS1 *latin1;Py_UCS2 *ucs2;Py_UCS4 *ucs4;} data; /* Canonical, smallest-form Unicode buffer */} PyUnicodeObject;
- list类型
typedef struct {PyObject_VAR_HEADPyObject **ob_item;Py_ssize_t allocated;} PyListObject;
- tuple类型
typedef struct {PyObject_VAR_HEADPyObject *ob_item[1];} PyTupleObject;
- dict类型
typedef struct {PyObject_HEADPy_ssize_t ma_used;PyDictKeysObject *ma_keys;PyObject **ma_values;} PyDictObject;
通过常见结构体可以基本了解到本质上每个对象内部会存储的数据。
扩展:在结构体部分你应该发现了str类型比较繁琐,那是因为python字符串在处理时需要考虑到编码的问题,在内部规定(见源码结构体):
-
字符串只包含ascii,则每个字符用1个字节表示,即:latin1
-
字符串包含中文等,则每个字符用2个字节表示,即:ucs2
-
字符串包含emoji等,则每个字符用4个字节表示,即:ucs4

2.3 Float类型
2.3.1 创建
val = 3.14
类似于这样创建一个float对象时,会执行C源码中的如下代码:
// Objects/floatobject.c// 用于缓存float对象的链表static PyFloatObject *free_list = NULL;static int numfree = 0;PyObject *PyFloat_FromDouble(double fval){// 如果free_list中有可用对象,则从free_list链表拿出来一个;否则为对象重新开辟内存。PyFloatObject *op = free_list;if (op != NULL) {free_list = (PyFloatObject *) Py_TYPE(op);numfree--;} else {// 根据float类型的大小,为float对象新开辟内存。op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject));if (!op)return PyErr_NoMemory();}// 对float对象进行初始化,例如:引用计数器初始化为1、添加到refchain链表等。/* Inline PyObject_New */(void)PyObject_INIT(op, &PyFloat_Type);// 对float对象赋值。即:op->ob_fval = 3.14op->ob_fval = fval;return (PyObject *) op;}
// Include/objimpl.h#define PyObject_INIT(op, typeobj)( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
// Objects/object.c// 维护了所有对象的一个环状双向链表static PyObject refchain = {&refchain, &refchain};void_Py_AddToAllObjects(PyObject *op, int force){if (force || op->_ob_prev == NULL) {op->_ob_next = refchain._ob_next;op->_ob_prev = &refchain;refchain._ob_next->_ob_prev = op;refchain._ob_next = op;}}void_Py_NewReference(PyObject *op){_Py_INC_REFTOTAL;// 引用计数器初始化为1。op->ob_refcnt = 1;// 对象添加到双向链表refchain中。_Py_AddToAllObjects(op, 1);_Py_INC_TPALLOCS(op);}
2.3.2 引用
val = 3.14data = val
在项目中如果出现这种引用关系时,会将原对象的引用计数器+1。
C源码执行流程如下:
// Include/object.hstatic inline void _Py_INCREF(PyObject *op){_Py_INC_REFTOTAL;// 对象的引用计数器 + 1op->ob_refcnt++;}#define Py_INCREF(op) _Py_INCREF(_PyObject_CAST(op))
2.3.3 销毁
val = 3.14del val
在项目中如果出现这种删除的语句,则内部会将引用计数器-1,如果引用计数器减为0,则进行缓存或垃圾回收。
C源码执行流程如下:
// Include/object.hstatic inline void _Py_DECREF(const char *filename, int lineno,PyObject *op){(void)filename; /* may be unused, shut up -Wunused-parameter */(void)lineno; /* may be unused, shut up -Wunused-parameter */_Py_DEC_REFTOTAL;// 引用计数器-1,如果引用计数器为0,则执行 _Py_Dealloc去缓存或垃圾回收。if (--op->ob_refcnt != 0) {#ifdef Py_REF_DEBUGif (op->ob_refcnt < 0) {_Py_NegativeRefcount(filename, lineno, op);}#endif}else {_Py_Dealloc(op);}}#define Py_DECREF(op) _Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op))
// Objects/object.cvoid_Py_Dealloc(PyObject *op){// 找到float类型的 tp_dealloc 函数destructor dealloc = Py_TYPE(op)->tp_dealloc;// 在refchain双向链表中摘除此对象。_Py_ForgetReference(op);// 执行float类型的 tp_dealloc 函数,去进行缓存或垃圾回收。(*dealloc)(op);}void_Py_ForgetReference(PyObject *op){...// 在refchain链表中移除此对象op->_ob_next->_ob_prev = op->_ob_prev;op->_ob_prev->_ob_next = op->_ob_next;op->_ob_next = op->_ob_prev = NULL;_Py_INC_TPFREES(op);}
// Objects/floatobject.c#define PyFloat_MAXFREELIST 100static int numfree = 0;static PyFloatObject *free_list = NULL;// float类型中函数的对应关系PyTypeObject PyFloat_Type = {PyVarObject_HEAD_INIT(&PyType_Type, 0)"float",sizeof(PyFloatObject),0,// tp_dealloc表示执行float_dealloc方法(destructor)float_dealloc, /* tp_dealloc */0, /* tp_print */...};static voidfloat_dealloc(PyFloatObject *op){// 检测是否是float类型if (PyFloat_CheckExact(op)) {// 检测free_list中缓存的个数是否已满,如果已满,则直接将对象销毁。if (numfree >= PyFloat_MAXFREELIST) {// 销毁PyObject_FREE(op);return;}// 将对象加入到free_list链表中numfree++;Py_TYPE(op) = (struct _typeobject *)free_list;free_list = op;}elsePy_TYPE(op)->tp_free((PyObject *)op);}
2.4 int类型
2.4.1 创建
age = 19
当在python中创建一个整型数据时,底层会触发他的如下源码:
PyObject *PyLong_FromLong(long ival){PyLongObject *v;...// 优先去小数据池中检查,如果在范围内则直接获取不再重新开辟内存。( -5 <= value < 257)CHECK_SMALL_INT(ival);...// 非小数字池中的值,重新开辟内存并初始化v = _PyLong_New(ndigits);if (v != NULL) {digit *p = v->ob_digit;Py_SIZE(v) = ndigits*sign;t = abs_ival;...}return (PyObject *)v;}#define NSMALLNEGINTS 5#define NSMALLPOSINTS 257#define CHECK_SMALL_INT(ival)do if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {return get_small_int((sdigit)ival);} while(0)static PyObject *get_small_int(sdigit ival){PyObject *v;v = (PyObject *)&small_ints[ival + NSMALLNEGINTS];// 引用计数器 + 1Py_INCREF(v);...return v;}PyLongObject *_PyLong_New(Py_ssize_t size){// 创建PyLongObject的指针变量PyLongObject *result;...// 根据长度进行开辟内存result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) +size*sizeof(digit));...// 对内存中的数据进行初始化并添加到refchain链表中。return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size);}
// Include/objimpl.h#define PyObject_NewVar(type, typeobj, n)( (type *) _PyObject_NewVar((typeobj), (n)) )static inline PyVarObject*_PyObject_INIT_VAR(PyVarObject *op, PyTypeObject *typeobj, Py_ssize_t size){assert(op != NULL);Py_SIZE(op) = size;// 对象初始化PyObject_INIT((PyObject *)op, typeobj);return op;}#define PyObject_INIT(op, typeobj)_PyObject_INIT(_PyObject_CAST(op), (typeobj))static inline PyObject*_PyObject_INIT(PyObject *op, PyTypeObject *typeobj){assert(op != NULL);Py_TYPE(op) = typeobj;if (PyType_GetFlags(typeobj) & Py_TPFLAGS_HEAPTYPE) {Py_INCREF(typeobj);}// 对象初始化,并把对象加入到refchain链表。_Py_NewReference(op);return op;}
// Objects/object.c// 维护了所有对象的一个环状双向链表static PyObject refchain = {&refchain, &refchain};void_Py_AddToAllObjects(PyObject *op, int force){if (force || op->_ob_prev == NULL) {op->_ob_next = refchain._ob_next;op->_ob_prev = &refchain;refchain._ob_next->_ob_prev = op;refchain._ob_next = op;}}void_Py_NewReference(PyObject *op){_Py_INC_REFTOTAL;// 引用计数器初始化为1。op->ob_refcnt = 1;// 对象添加到双向链表refchain中。_Py_AddToAllObjects(op, 1);_Py_INC_TPALLOCS(op);}
2.4.2 引用
value = 69data = value
类似于出现这种引用关系时,内部其实就是将对象的引用计数器+1,源码同float类型引用。
2.4.3 销毁
value = 699del value
在项目中如果出现这种删除的语句,则内部会将引用计数器-1,如果引用计数器减为0,则直接进行垃圾回收。(int类型是基于小数据池而不是free_list做的缓存,所以不会在销毁时缓存数据)。
C源码执行流程如下:
// Include/object.hstatic inline void _Py_DECREF(const char *filename, int lineno,PyObject *op){(void)filename; /* may be unused, shut up -Wunused-parameter */(void)lineno; /* may be unused, shut up -Wunused-parameter */_Py_DEC_REFTOTAL;// 引用计数器-1,如果引用计数器为0,则执行 _Py_Dealloc去垃圾回收。if (--op->ob_refcnt != 0) {#ifdef Py_REF_DEBUGif (op->ob_refcnt < 0) {_Py_NegativeRefcount(filename, lineno, op);}#endif}else {_Py_Dealloc(op);}}#define Py_DECREF(op) _Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op))
// Objects/object.cvoid_Py_Dealloc(PyObject *op){// 找到int类型的 tp_dealloc 函数(int类中没有定义tp_dealloc函数,需要去父级PyBaseObject_Type中找tp_dealloc函数)// 此处体现所有的类型都继承objectdestructor dealloc = Py_TYPE(op)->tp_dealloc;// 在refchain双向链表中摘除此对象。_Py_ForgetReference(op);// 执行int类型的 tp_dealloc 函数,去进行垃圾回收。(*dealloc)(op);}void_Py_ForgetReference(PyObject *op){...// 在refchain链表中移除此对象op->_ob_next->_ob_prev = op->_ob_prev;op->_ob_prev->_ob_next = op->_ob_next;op->_ob_next = op->_ob_prev = NULL;_Py_INC_TPFREES(op);}
// Objects/longobjet.cPyTypeObject PyLong_Type = {PyVarObject_HEAD_INIT(&PyType_Type, 0)"int", /* tp_name */offsetof(PyLongObject, ob_digit), /* tp_basicsize */sizeof(digit), /* tp_itemsize */0, /* tp_dealloc */...PyObject_Del, /* tp_free */};
Objects/typeobject.cPyTypeObject PyBaseObject_Type = {PyVarObject_HEAD_INIT(&PyType_Type, 0)"object", /* tp_name */sizeof(PyObject), /* tp_basicsize */0, /* tp_itemsize */object_dealloc, /* tp_dealloc */...PyObject_Del, /* tp_free */};static voidobject_dealloc(PyObject *self){// 调用int类型的 tp_free,即:PyObject_Del去销毁对象。Py_TYPE(self)->tp_free(self);}
2.5 str类型
2.5.1 创建
name = "武沛齐"
当在python中创建一个字符串数据时,底层会触发他的如下源码:
Objects/unicodeobject.cPyObject *PyUnicode_DecodeUTF8Stateful(const char *s,Py_ssize_t size,const char *errors,Py_ssize_t *consumed){return unicode_decode_utf8(s, size, _Py_ERROR_UNKNOWN, errors, consumed);}static PyObject *unicode_decode_utf8(const char *s, Py_ssize_t size,_Py_error_handler error_handler, const char *errors,Py_ssize_t *consumed);{...// 如果字符串长度为1,并且是ascii字符,直接去缓存链表 *unicode_latin1[256] 中获取。if (size == 1 && (unsigned char)s[0] < 128) {if (consumed)*consumed = 1;return get_latin1_char((unsigned char)s[0]);}// 对传入的utf-8的字节进行处理,并选择合适的方式转换成unicode字符串。(latin2/ucs2/ucs4)。...return _PyUnicodeWriter_Finish(&writer);}static PyObject*get_latin1_char(unsigned char ch){PyObject *unicode = unicode_latin1[ch];if (!unicode) {unicode = PyUnicode_New(1, ch);if (!unicode)return NULL;PyUnicode_1BYTE_DATA(unicode)[0] = ch;assert(_PyUnicode_CheckConsistency(unicode, 1));unicode_latin1[ch] = unicode;}Py_INCREF(unicode);return unicode;}PyObject *_PyUnicodeWriter_Finish(_PyUnicodeWriter *writer){PyObject *str;// 写入值到strstr = writer->buffer;writer->buffer = NULL;if (writer->readonly) {assert(PyUnicode_GET_LENGTH(str) == writer->pos);return str;}if (PyUnicode_GET_LENGTH(str) != writer->pos) {PyObject *str2;// 创建对象str2 = resize_compact(str, writer->pos);if (str2 == NULL) {Py_DECREF(str);return NULL;}str = str2;}assert(_PyUnicode_CheckConsistency(str, 1));return unicode_result_ready(str);}static PyObject*resize_compact(PyObject *unicode, Py_ssize_t length){...// 开辟内存new_unicode = (PyObject *)PyObject_REALLOC(unicode, new_size);if (new_unicode == NULL) {_Py_NewReference(unicode);PyErr_NoMemory();return NULL;}unicode = new_unicode;// 把对象加入到refchain链表_Py_NewReference(unicode);...return unicode;}
在字符串中除了会执行上述代码之外,还会执行以下代码实现内部的驻留机制。为了更好的理解,你可以认为驻留机制:将字符串保存到一个名为 interned 的字典中,以后再使用时 直接去字典中获取不再需要创建。
实际在源码中每次都会创建新的字符串,只不过在内部检测是否已驻留到interned中,如果在则使用interned内部的原来的字符串,把新创建的字符串当做垃圾去回收。
Objects/unicodeobject.cvoidPyUnicode_InternInPlace(PyObject **p){PyObject *s = *p;PyObject *t;#ifdef Py_DEBUGassert(s != NULL);assert(_PyUnicode_CHECK(s));#elseif (s == NULL || !PyUnicode_Check(s))return;#endif/* If it's a subclass, we don't really know what puttingit in the interned dict might do. */if (!PyUnicode_CheckExact(s))return;if (PyUnicode_CHECK_INTERNED(s))return;if (interned == NULL) {interned = PyDict_New();if (interned == NULL) {PyErr_Clear(); /* Don't leave an exception */return;}}Py_ALLOW_RECURSION// 将新字符串驻留到interned字典中,不存在则驻留,已存在则不再重复驻留。t = PyDict_SetDefault(interned, s, s);Py_END_ALLOW_RECURSIONif (t == NULL) {PyErr_Clear();return;}// 存在,使用已驻留的字符串 并 将引用计数器+1if (t != s) {Py_INCREF(t);Py_SETREF(*p, t); // 处理临时对象return;}/* The two references in interned are not counted by refcnt.The deallocator will take care of this */Py_REFCNT(s) -= 2; // 让临时对象可被回收。_PyUnicode_STATE(s).interned = SSTATE_INTERNED_MORTAL;}
2.5.2 引用
同上,引用计数器 + 1 .
2.5.3 销毁
val = "武沛齐"del val
在项目中如果出现这种删除的语句,则内部会将引用计数器-1,如果引用计数器减为0,则进行缓存或垃圾回收。
// Include/object.hstatic inline void _Py_DECREF(const char *filename, int lineno,PyObject *op){(void)filename; /* may be unused, shut up -Wunused-parameter */(void)lineno; /* may be unused, shut up -Wunused-parameter */_Py_DEC_REFTOTAL;// 引用计数器-1,如果引用计数器为0,则执行 _Py_Dealloc去缓存或垃圾回收。if (--op->ob_refcnt != 0) {#ifdef Py_REF_DEBUGif (op->ob_refcnt < 0) {_Py_NegativeRefcount(filename, lineno, op);}#endif}else {_Py_Dealloc(op);}}#define Py_DECREF(op) _Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op))
// Objects/object.cvoid_Py_Dealloc(PyObject *op){// 找到str类型的 tp_dealloc 函数destructor dealloc = Py_TYPE(op)->tp_dealloc;// 在refchain双向链表中摘除此对象。_Py_ForgetReference(op);// 执行float类型的 tp_dealloc 函数,去进行缓存或垃圾回收。(*dealloc)(op);}void_Py_ForgetReference(PyObject *op){...// 在refchain链表中移除此对象op->_ob_next->_ob_prev = op->_ob_prev;op->_ob_prev->_ob_next = op->_ob_next;op->_ob_next = op->_ob_prev = NULL;_Py_INC_TPFREES(op);}
// Objects/unicodeobject.cPyTypeObject PyUnicode_Type = {PyVarObject_HEAD_INIT(&PyType_Type, 0)"str", /* tp_name */sizeof(PyUnicodeObject), /* tp_basicsize */0, /* tp_itemsize *//* Slots */(destructor)unicode_dealloc, /* tp_dealloc */...PyObject_Del, /* tp_free */};static voidunicode_dealloc(PyObject *unicode){switch (PyUnicode_CHECK_INTERNED(unicode)) {case SSTATE_NOT_INTERNED:break;case SSTATE_INTERNED_MORTAL:/* revive dead object temporarily for DelItem */Py_REFCNT(unicode) = 3;// 在interned中删除驻留的字符串if (PyDict_DelItem(interned, unicode) != 0)Py_FatalError("deletion of interned string failed");break;case SSTATE_INTERNED_IMMORTAL:Py_FatalError("Immortal interned string died.");/* fall through */default:Py_FatalError("Inconsistent interned string state.");}if (_PyUnicode_HAS_WSTR_MEMORY(unicode))PyObject_DEL(_PyUnicode_WSTR(unicode));if (_PyUnicode_HAS_UTF8_MEMORY(unicode))PyObject_DEL(_PyUnicode_UTF8(unicode));if (!PyUnicode_IS_COMPACT(unicode) && _PyUnicode_DATA_ANY(unicode))PyObject_DEL(_PyUnicode_DATA_ANY(unicode));// 内存中销毁对象Py_TYPE(unicode)->tp_free(unicode);}
2.6 list类型
2.6.1 创建
v = [11,22,33]
当创建一个列表时候,内部的C源码会执行如下:
// Objects/listobject.c#define PyList_MAXFREELIST 80// free_list用于对list对象进行缓存,最多可缓存80个对象static PyListObject *free_list[PyList_MAXFREELIST];// free_list中可用的对象static int numfree = 0;PyObject *PyList_New(Py_ssize_t size){PyListObject *op;if (size < 0) {PyErr_BadInternalCall();return NULL;}if (numfree) {// 如果free_list中有缓存的对象,则直接从free_list中获取一个对象来使用。numfree--;op = free_list[numfree];_Py_NewReference((PyObject *)op);} else {// 缓存中没有,则需要 开辟内存 & 初始化对象op = PyObject_GC_New(PyListObject, &PyList_Type);if (op == NULL)return NULL;}if (size <= 0)op->ob_item = NULL;else {op->ob_item = (PyObject **) PyMem_Calloc(size, sizeof(PyObject *));if (op->ob_item == NULL) {Py_DECREF(op);return PyErr_NoMemory();}}Py_SIZE(op) = size;op->allocated = size;// 把对象加入到分代回收的三代中的0代链表中。_PyObject_GC_TRACK(op);return (PyObject *) op;}
static inline void _PyObject_GC_TRACK_impl(const char *filename, int lineno,PyObject *op){_PyObject_ASSERT_FROM(op, !_PyObject_GC_IS_TRACKED(op),"object already tracked by the garbage collector",filename, lineno, "_PyObject_GC_TRACK");PyGC_Head *gc = _Py_AS_GC(op);_PyObject_ASSERT_FROM(op,(gc->_gc_prev & _PyGC_PREV_MASK_COLLECTING) == 0,"object is in generation which is garbage collected",filename, lineno, "_PyObject_GC_TRACK");// 把对象加入到链表中,链表尾部还是gc.generation0。PyGC_Head *last = (PyGC_Head*)(_PyRuntime.gc.generation0->_gc_prev);_PyGCHead_SET_NEXT(last, gc);_PyGCHead_SET_PREV(gc, last);_PyGCHead_SET_NEXT(gc, _PyRuntime.gc.generation0);_PyRuntime.gc.generation0->_gc_prev = (uintptr_t)gc;}#define _PyObject_GC_TRACK(op)_PyObject_GC_TRACK_impl(__FILE__, __LINE__, _PyObject_CAST(op))
Include/objimpl.h#define PyObject_GC_New(type, typeobj)( (type *) _PyObject_GC_New(typeobj) )
//Modules/gcmodule.cPyObject *_PyObject_GC_New(PyTypeObject *tp){// 创建对象PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp));if (op != NULL)// 初始化对象并把对象加入到refchain链表中。op = PyObject_INIT(op, tp);return op;}PyObject *_PyObject_GC_Malloc(size_t basicsize){return _PyObject_GC_Alloc(0, basicsize);}static PyObject *_PyObject_GC_Alloc(int use_calloc, size_t basicsize){// 包含分代回收的三代链表struct _gc_runtime_state *state = &_PyRuntime.gc;PyObject *op;PyGC_Head *g;size_t size;if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))return PyErr_NoMemory();size = sizeof(PyGC_Head) + basicsize;// 创建 gc headif (use_calloc)g = (PyGC_Head *)PyObject_Calloc(1, size);elseg = (PyGC_Head *)PyObject_Malloc(size);if (g == NULL)return PyErr_NoMemory();assert(((uintptr_t)g & 3) == 0); // g must be aligned 4bytes boundaryg->_gc_next = 0;g->_gc_prev = 0;// 分代回收的0代数量+1state->generations[0].count++; /* number of allocated GC objects */// 如果0代超出自己的阈值,进行垃圾分代回收。if (state->generations[0].count > state->generations[0].threshold && state->enabled && state->generations[0].threshold && !state->collecting && !PyErr_Occurred()){// 正在收集state->collecting = 1;// 去进行垃圾回收收集collect_generations(state);// 结束收集state->collecting = 0;}op = FROM_GC(g);return op;}/* Get the object given the GC head */#define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1))static Py_ssize_tcollect_generations(struct _gc_runtime_state *state){Py_ssize_t n = 0;// 倒序循环三代,按照:2、1、0顺序for (int i = NUM_GENERATIONS-1; i >= 0; i--) {if (state->generations[i].count > state->generations[i].threshold) {if (i == NUM_GENERATIONS - 1 && state->long_lived_pending < state->long_lived_total / 4)continue;// 去进行回收,回收当前代之前的所有代。n = collect_with_callback(state, i);break;}}return n;}static Py_ssize_tcollect_with_callback(struct _gc_runtime_state *state, int generation){...// 回收,0、1、2代(通过引用传参获取 已回收的和未回收的链表)result = collect(state, generation, &collected, &uncollectable, 0);...return result;}/* This is the main function. Read this to understand how the collection process works. */static Py_ssize_tcollect(struct _gc_runtime_state *state, int generation,Py_ssize_t *n_collected, Py_ssize_t *n_uncollectable, int nofail){int i;Py_ssize_t m = 0; /* # objects collected */Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */PyGC_Head *young; /* the generation we are examining */PyGC_Head *old; /* next older generation */PyGC_Head unreachable; /* non-problematic unreachable trash */PyGC_Head finalizers; /* objects with, & reachable from, __del__ */PyGC_Head *gc;_PyTime_t t1 = 0; /* initialize to prevent a compiler warning *//* update collection and allocation counters */// generation分别会是 0 1 2// 让当前执行收集的代的更高级的代的count加1 ?例如:0带时,让1代的count+1// 因为当前带扫描一次,则更高级代count+1,当前带扫描到10次时,更高级的带要扫描一次。if (generation+1 < NUM_GENERATIONS)state->generations[generation+1].count += 1;// 比当前代低的代的count设置为0,因为当前带扫描时候会携带年轻带一起扫描,本次扫描之后对象都会升级到高级别的带,年轻代则为0for (i = 0; i <= generation; i++)state->generations[i].count = 0;// 总结:比当前扫描的代高的带count+1,自己和比自己低的代count设置为0.// 将比自己代低的所有代,搞到一个链表中// #define GEN_HEAD(state, n) (&(state)->generations[n].head)for (i = 0; i < generation; i++) {gc_list_merge(GEN_HEAD(state, i), GEN_HEAD(state, generation));}// 获取当前代的head(链表头)// #define GEN_HEAD(state, n) (&(state)->generations[n].head)young = GEN_HEAD(state, generation);// 比当前代老的head(链表头),如果是0、1、2中的2代时,则两个值相等。if (generation < NUM_GENERATIONS-1)//0、1代old = GEN_HEAD(state, generation+1);else//2代old = young;// 循环当前代(包含比自己年轻的代的链表)重的每个元素,将引用计数器拷贝到gc_refs中。// 拷贝出来的用于以后做计数器的计算,不回去更改原来的引用计数器的值。update_refs(young); // gc_prev is used for gc_refs// 处理循环引用,把循环引用的位置值为0.subtract_refs(young);// 将链表中所有引用计数器为0的,移动到unreachable链表(不可达链表)。// 循环young链表中的每个元素,并根据拷贝的引用计数器gc_refs进行判断,如果为0则放入不可达链表;gc_list_init(&unreachable);move_unreachable(young, &unreachable); // gc_prev is pointer againvalidate_list(young, 0);untrack_tuples(young);/* Move reachable objects to next generation. */// 将可达对象加入到下一代。if (young != old) {// 如果是0、1代,则升级到下一代。if (generation == NUM_GENERATIONS - 2) {// 如果是1代,则更新state->long_lived_pending += gc_list_size(young);}// 把young链表拼接到old链表中。gc_list_merge(young, old);}else {/* We only untrack dicts in full collections, to avoid quadraticdict build-up. See issue #14775. */// 如果是2代,则更新long_lived_total和long_lived_pendinguntrack_dicts(young);state->long_lived_pending = 0;state->long_lived_total = gc_list_size(young);}// 循环所有不可达的元素,把具有 __del__ 方法对象放到finalizers链表中。// 调用__del__之后,再会进行让他们在销毁。gc_list_init(&finalizers);// NEXT_MASK_UNREACHABLE is cleared here.// After move_legacy_finalizers(), unreachable is normal list.move_legacy_finalizers(&unreachable, &finalizers);/* finalizers contains the unreachable objects with a legacy finalizer;* unreachable objects reachable *from* those are also uncollectable,* and we move those into the finalizers list too.*/move_legacy_finalizer_reachable(&finalizers);validate_list(&finalizers, 0);validate_list(&unreachable, PREV_MASK_COLLECTING);.../* Clear weakrefs and invoke callbacks as necessary. */// 循环所有的不可达元素,处理所有弱引用到unreachable,如果弱引用对象仍然生存则放回old链表中。m += handle_weakrefs(&unreachable, old);validate_list(old, 0);validate_list(&unreachable, PREV_MASK_COLLECTING);/* Call tp_finalize on objects which have one. */// 执行那些具有的__del__方法的对象。finalize_garbage(&unreachable);// 最后,进行进行对垃圾的清除。if (check_garbage(&unreachable)) { // clear PREV_MASK_COLLECTING heregc_list_merge(&unreachable, old);}else {/* Call tp_clear on objects in the unreachable set. This will cause* the reference cycles to be broken. It may also cause some objects* in finalizers to be freed.*/m += gc_list_size(&unreachable);delete_garbage(state, &unreachable, old);}/* Collect statistics on uncollectable objects found and print* debugging information. */for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {n++;if (state->debug & DEBUG_UNCOLLECTABLE)debug_cycle("uncollectable", FROM_GC(gc));}if (state->debug & DEBUG_STATS) {double d = _PyTime_AsSecondsDouble(_PyTime_GetMonotonicClock() - t1);PySys_WriteStderr("gc: done, %" PY_FORMAT_SIZE_T "d unreachable, ""%" PY_FORMAT_SIZE_T "d uncollectable, %.4fs elapsed ",n+m, n, d);}/* Append instances in the uncollectable set to a Python* reachable list of garbage. The programmer has to deal with* this if they insist on creating this type of structure.*/// 执行完 __del__没有,不应该被删除的对象,再重新加入到可达链表中。handle_legacy_finalizers(state, &finalizers, old);validate_list(old, 0);/* Clear free list only during the collection of the highest* generation */if (generation == NUM_GENERATIONS-1) {clear_freelists();}...return n+m;}
2.6.2 引用
v1 = [11,22,33]v2 = v1
当对对象进行引用时候,内部引用计数器+1,原理同上。
2.6.3 销毁
v1 = [11,22,33]del v1
对列表对象进行销毁时,本质上就会执行引用计数器-1(同上),但当引用计数器为0时候,会执行list对象的tp_dealloc,即:
// Object/listobject.cPyTypeObject PyList_Type = {PyVarObject_HEAD_INIT(&PyType_Type, 0)"list",sizeof(PyListObject),0,(destructor)list_dealloc, /* tp_dealloc */...PyObject_GC_Del, /* tp_free */};/* Empty list reuse scheme to save calls to malloc and free */#ifndef PyList_MAXFREELIST#define PyList_MAXFREELIST 80#endifstatic PyListObject *free_list[PyList_MAXFREELIST];static int numfree = 0;static voidlist_dealloc(PyListObject *op){Py_ssize_t i;// 从分代回收的的代中移除PyObject_GC_UnTrack(op);Py_TRASHCAN_BEGIN(op, list_dealloc)if (op->ob_item != NULL) {/* Do it backwards, for Christian Tismer.There's a simple test case where somehow this reducesthrashing when a *very* large list is created andimmediately deleted. */i = Py_SIZE(op);while (--i >= 0) {Py_XDECREF(op->ob_item[i]);}PyMem_FREE(op->ob_item);}if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op))// free_list中还么有占满80,不销毁并缓冲在free_list中free_list[numfree++] = op;else// 销毁并在refchain中移除Py_TYPE(op)->tp_free((PyObject *)op);Py_TRASHCAN_END}
2.7 tuple类型
2.7.1 创建
v = (11,22,33)
当创建元组时候,会执行如下源码:
// Objects/tupleobject.c#define PyTuple_MAXSAVESIZE 20 /* Largest tuple to save on free list */#define PyTuple_MAXFREELIST 2000 /* Maximum number of tuples of each size to save */static PyTupleObject *free_list[PyTuple_MAXSAVESIZE]; // free_list[20] = {链表、链表..}static int numfree[PyTuple_MAXSAVESIZE]; // numfree[2000]表示每个链表的长度PyObject *PyTuple_New(Py_ssize_t size){PyTupleObject *op;...// free_list第0个元素存储的是空元祖if (size == 0 && free_list[0]) {op = free_list[0];Py_INCREF(op);return (PyObject *) op;}// 有缓存的tuple对象,则从free_list中获取if (size < PyTuple_MAXSAVESIZE && (op = free_list[size]) != NULL) {// 获取对象并初始化free_list[size] = (PyTupleObject *) op->ob_item[0];numfree[size]--;Py_SIZE(op) = size;Py_TYPE(op) = &PyTuple_Type;// 对象加入到refchain链表。_Py_NewReference((PyObject *)op);}else{..// 没有缓存数据,则创建对象op = PyObject_GC_NewVar(PyTupleObject, &PyTuple_Type, size);if (op == NULL)return NULL;}for (i=0; i < size; i++)op->ob_item[i] = NULL;if (size == 0) {free_list[0] = op;++numfree[0];Py_INCREF(op); /* extra INCREF so that this is never freed */}// 对象加入到分代的链表。_PyObject_GC_TRACK(op);return (PyObject *) op;}
// Includes/objimpl.h#define PyObject_GC_NewVar(type, typeobj, n)( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
Objects/gcmodules.cPyVarObject *_PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems){size_t size;PyVarObject *op;if (nitems < 0) {PyErr_BadInternalCall();return NULL;}size = _PyObject_VAR_SIZE(tp, nitems);// 开内存 & 分代 & 超过阈值则垃圾回收(流程同上述 列表过程)op = (PyVarObject *) _PyObject_GC_Malloc(size);if (op != NULL)op = PyObject_INIT_VAR(op, tp, nitems);return op;}
2.7.2 引用
v1 = (11,22,33)v2 = v1
引用时会触发引用计数器 + 1,具体流程同上。
2.7.3 销毁
v = (11,22,33)del v
销毁对象时候,执行引用计数器-1,如果计数器减为0,则触发tuple类型的tp_dealloc,详细如下:
PyTypeObject PyTuple_Type = {PyVarObject_HEAD_INIT(&PyType_Type, 0)"tuple",sizeof(PyTupleObject) - sizeof(PyObject *),sizeof(PyObject *),(destructor)tupledealloc, /* tp_dealloc */...PyObject_GC_Del, /* tp_free */};static voidtupledealloc(PyTupleObject *op){Py_ssize_t i;Py_ssize_t len = Py_SIZE(op);// 从分代的链表中移除PyObject_GC_UnTrack(op);Py_TRASHCAN_BEGIN(op, tupledealloc)if (len > 0) {i = len;while (--i >= 0)Py_XDECREF(op->ob_item[i]);// 缓存到free_list中if (len < PyTuple_MAXSAVESIZE && numfree[len] < PyTuple_MAXFREELIST &&Py_TYPE(op) == &PyTuple_Type){op->ob_item[0] = (PyObject *) free_list[len];numfree[len]++;free_list[len] = op;// 结束goto done; /* return */}}// 不缓存,则直接销毁对象并在refchain链表中移除。Py_TYPE(op)->tp_free((PyObject *)op);done:Py_TRASHCAN_END}
2.8 dict类型
2.8.1 创建
v = {"name":"武沛齐","age":18}
当创建一个字典对象时,Python底层会执行如下源码:
#define PyDict_MAXFREELIST 80// 缓存dict对象的free_liststatic PyDictObject *free_list[PyDict_MAXFREELIST];static int numfree = 0;PyObject *PyDict_New(void){dictkeys_incref(Py_EMPTY_KEYS);return new_dict(Py_EMPTY_KEYS, empty_values);}/* Consumes a reference to the keys object */static PyObject *new_dict(PyDictKeysObject *keys, PyObject **values){PyDictObject *mp;assert(keys != NULL);// 如果有缓存,则从缓存区获取一个对象if (numfree) {mp = free_list[--numfree];assert (mp != NULL);assert (Py_TYPE(mp) == &PyDict_Type);_Py_NewReference((PyObject *)mp);}else {// 没有缓存,则去创建字典对象。(源码流程同list类型)mp = PyObject_GC_New(PyDictObject, &PyDict_Type);if (mp == NULL) {dictkeys_decref(keys);if (values != empty_values) {free_values(values);}return NULL;}}mp->ma_keys = keys;mp->ma_values = values;mp->ma_used = 0;mp->ma_version_tag = DICT_NEXT_VERSION();ASSERT_CONSISTENT(mp);return (PyObject *)mp;}
2.8.2 引用
v1 = {"name":"武沛齐","age":18}v2 = v1
出现引用,则应用计数器+1(同上)。
2.8.3 销毁
v1 = {"name":"武沛齐","age":18}del v1
销毁一个对象时候,引用计数器-1,当减到0时候,则触发dict类型的tp_dealloc,源码如下:
// Object/dictobject.cPyTypeObject PyDict_Type = {PyVarObject_HEAD_INIT(&PyType_Type, 0)"dict",sizeof(PyDictObject),0,(destructor)dict_dealloc, /* tp_dealloc */...PyObject_GC_Del, /* tp_free */};static voiddict_dealloc(PyDictObject *mp){PyObject **values = mp->ma_values;PyDictKeysObject *keys = mp->ma_keys;Py_ssize_t i, n;// 从分代链表中移除PyObject_GC_UnTrack(mp);Py_TRASHCAN_BEGIN(mp, dict_dealloc)...// 缓存区为满,则缓存if (numfree < PyDict_MAXFREELIST && Py_TYPE(mp) == &PyDict_Type)free_list[numfree++] = mp;else// 已满则销毁,并在refchain中移除。Py_TYPE(mp)->tp_free((PyObject *)mp);Py_TRASHCAN_END}