[算法模板]整体二分
引子
很多题都可以用二分解决。但是如果我们对每个查询都直接二分,可能会收获一个 TLE 。这时候我们就会用到整体二分。整体二分的主体思路就是把多个查询一起解决。(所以这是一个离线算法)
所谓整体二分,需要数据结构题满足一下性质:
询问的答案具有可二分性
修改对判定答案的贡献互相独立,修改之间互不影响效果
修改如果对判定答案有贡献,则贡献为一确定的与判定标准无关的值
贡献满足交换律,结合律,具有可加性
题目允许离线算法
——许昊然《浅谈数据结构题几个非经典解法》
思路
定义([l,r])为答案的值域,([L,R])为答案的定义域。(也就是说这个答案是针对区间([L,R])的)
- 我们首先把所有操作按顺序存入一个结构体中。然后开始分治。
- 在每一层分治中,利用数据结构(一般是树状数组)统计当前查询的答案和mid之间的关系。
- 根据查询出来的关系将所有查询分为q1和q2(小于等于mid和大于mid)
- 将q1和q2重新组成新的查询序列q,分治。
- 当(l=r)时,找到答案,记录答案返回即可。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define maxn (int)(7e4+1000)
#define inf (int)(1e9+1000)
using namespace std;
struct node{
int val,x,y,k,pos,ty;
}q[maxn],q1[maxn],q2[maxn];
int n,m,a[maxn],t,cnt,c[maxn],ans[maxn];
void add(int pos,int x){
for(;pos<=n;pos+=pos&-pos){
c[pos]+=x;
}
return;
}
int query(int pos){
int anstot=0;
for(;pos>=1;pos-=pos&-pos){
anstot+=c[pos];
}
return anstot;
}
void solve(int l,int r,int L,int R){
if(l>r||L>R)return;
int cnt1=0,cnt2=0,mid=(l+r)>>1;
if(l==r){
for(int i=L;i<=R;i++){
if(q[i].ty){ans[q[i].pos]=l;}
}
return;
}
for(int i=L;i<=R;i++){//遍历所有询问
if(q[i].ty){//为查询操作
int tmp=query(q[i].y)-query(q[i].x-1);//小于等于mid,在[x,y]区间内的元素个数
if(tmp>=q[i].k){//mid过大
q1[++cnt1]=q[i];
}
else{
q[i].k-=tmp;q2[++cnt2]=q[i];
}
}
else{
if(q[i].val<=mid){add(q[i].pos,q[i].k);q1[++cnt1]=q[i];}
else q2[++cnt2]=q[i];
}
}
for(int i=1;i<=cnt1;i++){if(!q1[i].ty)add(q1[i].pos,-q1[i].k);}
for(int i=1;i<=cnt1;i++){q[L+i-1]=q1[i];}
for(int i=1;i<=cnt2;i++){q[L+i-1+cnt1]=q2[i];}
solve(l,mid,L,L+cnt1-1);solve(mid+1,r,L+cnt1,R);
}
void solve1(){
int cnt=0,cntans=0,pos,x;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);q[++cnt]=(node){a[i],0,0,1,i,0};
}
for(int i=1;i<=m;i++){
int l,r,k;char s[5];scanf("%s",s);
if(s[0]=='Q'){
scanf("%d%d%d",&l,&r,&k);q[++cnt]=(node){0,l,r,k,++cntans,1};
}
else{
scanf("%d%d",&pos,&x);q[++cnt]=(node){a[pos],0,0,-1,pos,0};q[++cnt]=(node){a[pos]=x,0,0,1,pos,0};
}
}
solve(-inf,inf,1,cnt);
for(int i=1;i<=cntans;i++){
printf("%d
",ans[i]);
}
}
int main(){
scanf("%d",&t);
while(t--){
solve1();
}
return 0;
}