A:签到。
#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> using namespace std; #define ll long long int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int a[4]; int main() { //freopen("a.in","r",stdin); //freopen("a.out","w",stdout); for (int i=0;i<4;i++) a[i]=read(); sort(a,a+4); if (a[0]==1&&a[1]==4&&a[2]==7&&a[3]==9) cout<<"YES"; else cout<<"NO"; }
B:签到*2。
#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> using namespace std; #define ll long long int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } char s[110]; int n; int main() { //freopen("a.in","r",stdin); //freopen("a.out","w",stdout); scanf("%s",s);n=strlen(s); char a[]="keyence"; if (n<7) cout<<"NO"; else { int x=0,y=0; for (int i=0;i<7;i++) if (s[i]==a[i]) x++;else break; for (int i=n-1;i>n-8;i--) if (s[i]==a[7-(n-i)]) y++;else break; if (x+y>=7) cout<<"YES"; else cout<<"NO"; } }
C:按ai-bi从小到大排序,依次将剩余最多的分配给需求最大的即可。
#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 100010 int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,c[N]; ll ans; struct data { int x,y; bool operator <(const data&a) const { return x-y<a.x-a.y; } }a[N]; int main() { //freopen("a.in","r",stdin); //freopen("a.out","w",stdout); n=read(); for (int i=1;i<=n;i++) a[i].x=read(); for (int i=1;i<=n;i++) a[i].y=read(); sort(a+1,a+n+1); for (int i=1;i<=n;i++) c[i]=a[i].x; for (int i=1;i<=n;i++) ans+=a[i].x-a[i].y; if (ans<0) {cout<<-1;return 0;} int x=n,ans=0; for (int i=1;i<=n;i++) { if (a[i].x>=a[i].y) break; while (a[i].y-a[i].x>a[x].x-a[x].y) { a[i].x+=a[x].x-a[x].y; a[x].x=a[x].y; x--; } a[x].x-=a[i].y-a[i].x,a[i].x=a[i].y; } for (int i=1;i<=n;i++) if (c[i]!=a[i].x) ans++; cout<<ans; }
D:按数从大到小考虑,如果其作为某行最大值出现就会多一行被占领,列同理。记录当前被占领的行和列的数量,每次考虑填当前数的方案数,根据其是否在行列最大值中出现,分类讨论一下,给答案乘上这个方案数即可。这个弱智的不行的讨论写了我一年。
#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 1010 #define P 1000000007 int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,a[N],b[N],posa[N*N],posb[N*N],ans; int row,line; int main() { //freopen("a.in","r",stdin); //freopen("a.out","w",stdout); n=read(),m=read(); for (int i=1;i<=n;i++) { a[i]=read(); if (posa[a[i]]) {cout<<0;return 0;} posa[a[i]]=i; } for (int i=1;i<=m;i++) { b[i]=read(); if (posb[b[i]]) {cout<<0;return 0;} posb[b[i]]=i; } row=0,line=0;ans=1; for (int i=n*m;i>=1;i--) { if (posa[i]&&posb[i]) {row++,line++;continue;} if (!posa[i]&&!posb[i]) { if (row*line-(n*m-i)<=0) {cout<<0;return 0;} ans=1ll*ans*(row*line-(n*m-i))%P; } if (posa[i]) ans=1ll*ans*line%P,row++; if (posb[i]) ans=1ll*ans*row%P,line++; } cout<<ans; }
result:rank 241 rating +19
E:分治,每次考虑跨越中点的边,此时可以将边权中的绝对值分配到点权上。找到两边各自点权最小的点i0,、j0,将所有包含这两点之一且跨越中点的边加进图中,最后跑kruskal即可。因为考虑边(i,j),其边权一定大于(i0,j)和(i,j0),众所周知环上的最大边不可能出现在MST中。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 200010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,d,a[N],fa[N],t; ll ans; struct data { int x,y;ll z; bool operator <(const data&a) const { return z<a.z; } }e[N<<5]; int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);} ll calcl(int i) { return a[i]-1ll*i*d; } ll calcr(int i) { return a[i]+1ll*i*d; } void solve(int l,int r) { if (l==r) return; int mid=l+r>>1; solve(l,mid); solve(mid+1,r); int L=l; for (int i=l;i<=mid;i++) if (calcl(i)<calcl(L)) L=i; int R=r; for (int i=mid+1;i<=r;i++) if (calcr(i)<calcr(R)) R=i; for (int i=l;i<=mid;i++) e[++t]=(data){i,R,calcl(i)+calcr(R)}; for (int i=mid+1;i<=r;i++) e[++t]=(data){L,i,calcl(L)+calcr(i)}; } signed main() { freopen("e.in","r",stdin); freopen("e.out","w",stdout); n=read(),d=read(); for (int i=1;i<=n;i++) a[i]=read(); solve(1,n); for (int i=1;i<=n;i++) fa[i]=i; sort(e+1,e+t+1); for (int i=1;i<=t;i++) if (find(e[i].x)!=find(e[i].y)) { fa[find(e[i].x)]=find(e[i].y); ans+=e[i].z; } cout<<ans; return 0; //NOTICE LONG LONG!!!!! }
另一种做法是直接用线段树维护prim的过程。发现早就忘了prim是啥了。
F:正常的想法是计算第i次切割的贡献,但似乎很难低于n2。
换一种思路,考虑计算以点(i,j)为左下角的矩形的贡献。这个矩形在选择第i行和第j列切割后出现,出现时贡献为1,出现后每切一刀贡献+1。不妨先考虑i,j>0的情况。
为了便于考虑,改为计算该矩形贡献的期望。
矩形首次出现产生的贡献显然就是i行j列都在前k次切割中出现的概率,这个概率显然为C(k,2)/C(n+m,2),即一共有C(n+m,2)对,该对在其中等概率出现。
对于出现后的贡献,考虑是切x时产生的贡献,这相当于是i,j,x都在前k次中出现,且x在i和j之后出现,那么概率是1/3*C(k,3)/C(n+m,3)。x有n+m-2种取值,所以再乘上n+m-2。
i=0或j=0的情况类似。当然求的是期望最后别忘了换成总贡献。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 20000010 #define P 1000000007 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,k,fac[N],inv[N],ans; int C(int n,int m){if (m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;} int invC(int n,int m){if (m>n) return 0;return 1ll*inv[n]*fac[m]%P*fac[n-m]%P;} signed main() { n=read(),m=read(),k=read(); fac[0]=1;for (int i=1;i<=n+m;i++) fac[i]=1ll*fac[i-1]*i%P; inv[0]=inv[1]=1;for (int i=2;i<=n+m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P; for (int i=2;i<=n+m;i++) inv[i]=1ll*inv[i-1]*inv[i]%P; ans=1ll*C(k,2)*invC(n+m,2)%P; ans=(ans+1ll*invC(3,1)*C(k,3)%P*invC(n+m,3)%P*(n+m-2))%P; ans=1ll*ans*n%P*m%P; int ans1=0; ans1=1ll*C(k,1)*invC(n+m,1)%P; ans1=(ans1+1ll*invC(2,1)*C(k,2)%P*invC(n+m,2)%P*(n+m-1))%P; ans1=1ll*ans1*(n+m)%P; ans=(ans+ans1+k)%P; cout<<1ll*ans*C(n+m,k)%P*fac[k]%P; return 0; //NOTICE LONG LONG!!!!! }