zoukankan      html  css  js  c++  java
  • Dijkstra_邻接表 Hlg 1419 昂贵的假花

    呃~

    一开始写了邻接矩阵的~结果mle了~

    后来改成了邻接表的~结果tle了~

    然后就用快排做了~~

    但是程大学长说用堆排序~wulala~看着很麻烦吖~暂时放着~~

    输入T<T组样例..>

    输入n个點+m条边..

    输入n个點的价值..

    输入m条边<u  起点 v终点  w (u, v)的权值..>

     

    其实最重要就是求单源最短路径了..

     

    用邻接表可以解决点太多的问题..

     

    用堆排序或优先队列可以解决  tle的问题..

     

    AC代码<邻接表_优先排列>..

    View Code
      1 #include <stdio.h>
      2 #include <cstring>
      3 #include <queue>
      4 using namespace std;
      5 #define INF 0x1f1f1f1f
      6 
      7 struct ArcNode
      8 {
      9   int adjvex;
     10   long long w;
     11   ArcNode *nextarc;
     12 }node[50010];
     13 
     14 struct Node
     15 {
     16   int num;
     17   long long w;
     18   bool operator < (Node n) const
     19   {
     20     return w > n.w;
     21   }
     22 }tem, tem1;
     23 
     24 long long dist[50010];
     25 int n, e;
     26 bool fflag;
     27 ArcNode edge[50010 * 2];
     28 int nE;
     29 
     30 void Dijkstra(int v0)
     31 {
     32   int i, j;
     33   ArcNode *p = &node[v0];
     34   ArcNode *pi = NULL;
     35   priority_queue<Node> Q;
     36 
     37   while(p != NULL)
     38   {
     39   dist[p->adjvex] = p->w;
     40   p = p->nextarc;
     41   }
     42 
     43   dist[v0] = 0;
     44   tem.num = v0;
     45   tem.w = 0;
     46 
     47   Q.push(tem);
     48   while(!Q.empty())
     49   {
     50     tem = Q.top();
     51     Q.pop();
     52 
     53     for(pi = node[tem.num].nextarc; pi != NULL; pi = pi->nextarc)
     54     {
     55       tem1.w = tem.w + pi->w;
     56       tem1.num = pi->adjvex;
     57       if(tem1.w <= dist[tem1.num])
     58       {
     59         dist[tem1.num] = tem1.w;
     60         Q.push(tem1);
     61       }
     62     }
     63   }
     64 
     65 }//Dijkstra
     66 
     67 
     68 int main()
     69 {
     70   int T;
     71   int i, j, k;
     72   int a, b;
     73   long long w;
     74   ArcNode *p;
     75   long long sum;
     76   long long W[50010];
     77   while(scanf("%d", &T) != EOF)
     78   while(T--)
     79   {
     80     sum = 0;
     81     fflag = true;
     82     scanf("%d%d", &n, &e);
     83 
     84     for(i = 1; i <= n; ++i)
     85     {
     86       scanf("%lld", &W[i]);
     87       node[i].nextarc = NULL;
     88     }// for i n cin W
     89 
     90     nE = 0;
     91     for(i = 0; i < e; ++i)
     92     {
     93       scanf("%d %d %lld", &a, &b, &w);
     94 
     95       p = edge + nE++;
     96       p->adjvex = b;
     97       p->w = w;
     98       p->nextarc = node[a].nextarc;
     99       node[a].nextarc = p;
    100 
    101       p = edge + nE++;
    102       p->adjvex = a;
    103       p->w = w;
    104       p->nextarc = node[b].nextarc;
    105       node[b].nextarc = p;
    106 
    107     }//for i v cin a b w
    108 
    109     memset(dist, INF, sizeof(dist));
    110 
    111     Dijkstra(1);
    112 
    113     for(i = 1; i <= n; ++i)
    114     {
    115       if(dist[i] >= INF)
    116       {
    117         fflag = false;
    118         break;
    119       }
    120     }//for i n
    121 
    122 
    123     if(!fflag)
    124     {
    125       printf("No Answer\n");
    126       continue;
    127     }//if !flag
    128     else
    129     {
    130       for(i = 1; i <= n; ++i)
    131         sum += dist[i]*W[i];
    132       printf("%lld\n", sum);
    133     }// flag
    134   }//while t--
    135   return 0;
    136 }

    Mle代码<邻接矩阵>

    View Code
      1 #include<stdio.h>
      2 
      3 #include<cstring>
      4 
      5 #defineINF 0x7fffffff
      6 
      7 usingnamespace std;
      8 
      9  
     10 
     11 intn, e;
     12 
     13 intEdge[50010][50010];
     14 
     15 boolS[50010];
     16 
     17 intdist[50010];
     18 
     19  
     20 
     21 voidDijkstra(int v0)
     22 
     23 {
     24 
     25     int i, j, k;
     26 
     27     for(i = 0; i < n; ++i)
     28 
     29     {
     30 
     31         dist[i] = Edge[v0][i];
     32 
     33         S[i] = false;
     34 
     35     }// for i n
     36 
     37     S[v0] = true;
     38 
     39     dist[v0] = 0;
     40 
     41     for(i = 0; i < n-1; ++i)
     42 
     43     {
     44 
     45         int min = INF;
     46 
     47         int u = v0;
     48 
     49         for(j = 0; j < n; ++j)
     50 
     51         {
     52 
     53             if(!S[j] && dist[j] <min)
     54 
     55             {
     56 
     57                u = j;
     58 
     59                 min = dist[j];
     60 
     61             }// if !S & dist < min
     62 
     63         }// for j n
     64 
     65         S[u] = true;
     66 
     67  
     68 
     69         for(k = 0; k < n; ++k)
     70 
     71         {
     72 
     73             if(!S[k] && Edge[u][k] <INF && dist[u]+Edge[u][k] < dist[k])
     74 
     75             {
     76 
     77                 dist[k] = dist[u]+Edge[u][k];
     78 
     79             }// if !S  && Edge(u, k) ***
     80 
     81         }// for k n
     82 
     83     }//for i n-1
     84 
     85  
     86 
     87 }//Dijkstra v0
     88 
     89  
     90 
     91 intmain()
     92 
     93 {
     94 
     95     int T;
     96 
     97     int i, j, k;
     98 
     99     int W[50010];
    100 
    101     int a, b, w;
    102 
    103     long long sum;
    104 
    105     bool flag;
    106 
    107  
    108 
    109     while(scanf("%d", &T) != EOF)
    110 
    111     while(T--)
    112 
    113     {
    114 
    115         memset(Edge, 0, sizeof(Edge));
    116 
    117         flag = true;
    118 
    119         sum = 0;
    120 
    121         scanf("%d%d", &n,&e);
    122 
    123         for(i = 0; i < n; ++i)
    124 
    125         scanf("%d", &W[i]);
    126 
    127  
    128 
    129         for(i = 0; i < n; ++i)
    130 
    131         {
    132 
    133             for(j = 0; j < n; ++j)
    134 
    135             {
    136 
    137                 if(i == j) Edge[i][j] = 0;
    138 
    139                 else if(Edge[i][j] == 0)Edge[i][j] = INF;
    140 
    141             }//for j n
    142 
    143         }//for i n
    144 
    145  
    146 
    147         for(i = 0; i < e; ++i)
    148 
    149         {
    150 
    151             scanf("%d%d%d", &a,&b, &w);
    152 
    153             Edge[a-1][b-1] = w;
    154 
    155             Edge[b-1][a-1] = w;
    156 
    157         }// cin u v w
    158 
    159 /*
    160 
    161 for(i= 0; i < n; ++i)
    162 
    163 {
    164 
    165     for(j = 0; j < n; ++j)
    166 
    167     if(Edge[i][j] == INF) printf("*     ");
    168 
    169     else printf("%d     ", Edge[i][j]);
    170 
    171     puts("");
    172 
    173 }
    174 
    175 ///
    176 
    177         Dijkstra(0);
    178 
    179  
    180 
    181         for(i = 1; i < n; ++i)
    182 
    183         if(dist[i] == INF)
    184 
    185         {
    186 
    187             flag = false;
    188 
    189             break;
    190 
    191         }//for no answer
    192 
    193         if(!flag)
    194 
    195         {
    196 
    197             printf("No Answer\n");
    198 
    199             continue;
    200 
    201         }//cout no answer
    202 
    203         else
    204 
    205         {
    206 
    207             for(i = 1; i < n; ++i)
    208 
    209             {
    210 
    211                 sum += dist[i]*W[i];
    212 
    213             }// for i n-1
    214 
    215  
    216 
    217             printf("%lld\n", sum);
    218 
    219         }// cout sum
    220 
    221  
    222 
    223     }// while t--
    224 
    225  
    226 
    227     return 0;
    228 
    229 }
    230 
    231  

    Tle代码<邻接表..>

    View Code
      1 #include<stdio.h>
      2 
      3 #include<cstring>
      4 
      5 #include<queue>
      6 
      7 #defineINF 0x1f1f1f1f
      8 
      9  
     10 
     11 structArcNode
     12 
     13 {
     14 
     15     ArcNode(){nextarc = NULL;}
     16 
     17     int adjvex;
     18 
     19     long long w;
     20 
     21     ArcNode *nextarc;
     22 
     23 }node[50010];
     24 
     25  
     26 
     27 longlong dist[50010];
     28 
     29 boolflag[50010];
     30 
     31 intn, e;
     32 
     33 boolfflag;
     34 
     35  
     36 
     37 voidDijkstra(int v0)
     38 
     39 {
     40 
     41     int i, j;
     42 
     43     ArcNode *p = &node[v0];
     44 
     45     ArcNode *pi = NULL;
     46 
     47  
     48 
     49     memset(flag, false, sizeof(flag));
     50 
     51  
     52 
     53     while(p != NULL)
     54 
     55     {
     56 
     57         dist[p->adjvex] = p->w;
     58 
     59         p = p->nextarc;
     60 
     61     }
     62 
     63     flag[v0] = true;
     64 
     65     dist[v0] = 0;
     66 
     67     for(i = 0; i < n-1; ++i)   
     68 
     69     {
     70 
     71         long long min = INF, u = v0;
     72 
     73         for(j = 1; j <= n; ++j)
     74 
     75         {
     76 
     77             if(!flag[j] && dist[j] <min)
     78 
     79             {
     80 
     81                 u = j;
     82 
     83                 min = dist[j];
     84 
     85             }//if !flag && dist <min
     86 
     87         }// for j n
     88 
     89  
     90 
     91         flag[u] = true;
     92 
     93         for(pi = &node[u]; pi; pi =pi->nextarc)
     94 
     95         {
     96 
     97             if(!flag[pi->adjvex] &&dist[u]+pi->w < dist[pi->adjvex])
     98 
     99             {
    100 
    101                 dist[pi->adjvex] = dist[u] +pi->w;
    102 
    103             }
    104 
    105         }
    106 
    107     }// for i n-1
    108 
    109 }//Dijkstra
    110 
    111  
    112 
    113  
    114 
    115 intmain()
    116 
    117 {
    118 
    119     int T;
    120 
    121     int i, j, k;
    122 
    123     int a, b;
    124 
    125     long long w;
    126 
    127     ArcNode *p;
    128 
    129     long long sum;
    130 
    131     long long W[50010];
    132 
    133     while(scanf("%d", &T) != EOF)
    134 
    135     while(T--)
    136 
    137     {
    138 
    139         sum = 0;
    140 
    141         fflag = true;
    142 
    143         scanf("%d%d", &n,&e);
    144 
    145  
    146 
    147         for(i = 1; i <= n; ++i)
    148 
    149         {
    150 
    151             scanf("%lld", &W[i]);
    152 
    153             node[i].nextarc = NULL;
    154 
    155         }// for i n cin W
    156 
    157         for(i = 0; i < e; ++i)
    158 
    159         {
    160 
    161             scanf("%d %d %lld",&a, &b, &w);
    162 
    163  
    164 
    165             p = new ArcNode;
    166 
    167             p->adjvex = b;
    168 
    169             p->w = w;
    170 
    171             p->nextarc = node[a].nextarc;
    172 
    173             node[a].nextarc = p;
    174 
    175  
    176 
    177             p = new ArcNode;
    178 
    179             p->adjvex = a;
    180 
    181             p->w = w;
    182 
    183             p->nextarc = node[b].nextarc;
    184 
    185             node[b].nextarc = p;
    186 
    187  
    188 
    189  
    190 
    191         }//for i v cin a b w
    192 
    193  
    194 
    195         memset(dist, INF, sizeof(dist));
    196 
    197  
    198 
    199         Dijkstra(1);
    200 
    201  
    202 
    203         for(i = 1; i <= n; ++i)
    204 
    205         {
    206 
    207             if(dist[i] >= INF)
    208 
    209             {
    210 
    211                 fflag = false;
    212 
    213                 break;
    214 
    215             }
    216 
    217         }//for i n
    218 
    219  
    220 
    221  
    222 
    223         if(!fflag)
    224 
    225         {
    226 
    227             printf("No Answer\n");
    228 
    229             continue;
    230 
    231         }//if !flag
    232 
    233         else
    234 
    235         {
    236 
    237             for(i = 1; i <= n; ++i)
    238 
    239             sum += dist[i]*W[i];
    240 
    241             printf("%lld\n", sum);
    242 
    243         }// flag
    244 
    245     }//while t--
    246 
    247     return 0;
    248 
    249 }
    250 
    251  

    黄李龙学长版~<堆排序>

    View Code
      1 #include <cstdio>
      2 
      3 #include <cstring>
      4 
      5 #include <climits>
      6 
      7 #include <iostream>
      8 
      9 #include <algorithm>
     10 
     11 using namespace std;
     12 
     13 typedef long long llong;
     14 
     15 const int MAXN = 50000 + 10;
     16 
     17  
     18 
     19 struct Edge {
     20 
     21        intto, len;
     22 
     23        Edge*next;
     24 
     25 };
     26 
     27 int nE;
     28 
     29 Edge *head[MAXN];
     30 
     31 Edge E[MAXN * 2];
     32 
     33  
     34 
     35 void addEdge(int u, int v, int len)
     36 
     37 {
     38 
     39        Edge*e = E + nE++;
     40 
     41        e->to= v;
     42 
     43        e->len= len;
     44 
     45        e->next= head[u];
     46 
     47        head[u]= e;
     48 
     49 }
     50 
     51  
     52 
     53 bool vis[MAXN];
     54 
     55 struct Node {
     56 
     57        intv;
     58 
     59        llonglen;
     60 
     61        booloperator < (const Node &B) const {
     62 
     63               returnlen > B.len;
     64 
     65        }
     66 
     67 } vHeap[MAXN];
     68 
     69  
     70 
     71 void dijkstra(int n, int s, Edge *head[],llong len[])
     72 
     73 {
     74 
     75        memset(vis,0, sizeof(vis[0]) * (n + 1));
     76 
     77        memset(len,-1, sizeof(len[0]) * (n + 1));
     78 
     79        len[s]= 0;
     80 
     81        intcnt = 1;
     82 
     83        vHeap[0].v= s;
     84 
     85        vHeap[0].len= 0;
     86 
     87        for(int i = 0; i < n; ++i) {
     88 
     89               intu = -1;
     90 
     91               llongminLen = -1;
     92 
     93               while(cnt > 0) {
     94 
     95                      u= vHeap[0].v;
     96 
     97                      minLen= vHeap[0].len;
     98 
     99                      pop_heap(vHeap,vHeap + cnt);
    100 
    101                      --cnt;
    102 
    103                      if(!vis[u]) {
    104 
    105                             break;
    106 
    107                      }
    108 
    109                      u= -1;
    110 
    111               }
    112 
    113               if(u == -1) break;
    114 
    115               vis[u]= true;
    116 
    117               for(Edge *e = head[u]; e; e = e->next) {
    118 
    119                      if(!vis[e->to] && (len[e->to] == -1 || len[e->to] > minLen +e->len)) {
    120 
    121                             len[e->to]= minLen + e->len;
    122 
    123                             vHeap[cnt].v= e->to;
    124 
    125                             vHeap[cnt].len= len[e->to];
    126 
    127                             ++cnt;
    128 
    129                             push_heap(vHeap,vHeap + cnt);
    130 
    131                      }
    132 
    133               }
    134 
    135        }
    136 
    137 }
    138 
    139  
    140 
    141 int weight[MAXN];
    142 
    143 llong len[MAXN];
    144 
    145  
    146 
    147 int main()
    148 
    149 {
    150 
    151        intnTest;
    152 
    153        intn, e;
    154 
    155        scanf("%d",&nTest);
    156 
    157        while(nTest--) {
    158 
    159               scanf("%d%d", &n, &e);
    160 
    161               for(int i = 1; i <= n; ++i) {
    162 
    163                      scanf("%d",&weight[i]);
    164 
    165               }
    166 
    167               nE= 0;
    168 
    169               memset(head,0, sizeof(head));
    170 
    171               for(int i = 0; i < e; ++i) {
    172 
    173                      inta, b, w;
    174 
    175                      scanf("%d%d %d", &a, &b, &w);
    176 
    177                      addEdge(a,b, w);
    178 
    179                      addEdge(b,a, w);
    180 
    181               }
    182 
    183  
    184 
    185               dijkstra(n,1, head, len);
    186 
    187               llongans = 0;
    188 
    189               for(int i = 1; i <= n; ++i) {
    190 
    191                      if(len[i] < 0) {
    192 
    193                             ans= -1;
    194 
    195                             break;
    196 
    197                      }
    198 
    199                      ans+= weight[i] * len[i];
    200 
    201               }
    202 
    203               if(ans >= 0) {
    204 
    205                      printf("%lld\n",ans);
    206 
    207               }else {
    208 
    209                      puts("NoAnswer");
    210 
    211               }
    212 
    213        }
    214 
    215        return0;
    216 
    217 }

     

  • 相关阅读:
    抖动代码
    WSAWaitForMultipleEvents()
    udp 不需要 listen
    WSAEventSelect
    C++ Win32控制台应用程序捕捉关闭事件
    玩转Win32开发(2):完整的开发流程
    win32线程池代码(WinApi/C++)
    又线程类封装
    Win2 Socket(套接字)相关 API
    Win32函数Sleep的精度测试
  • 原文地址:https://www.cnblogs.com/Griselda/p/2515366.html
Copyright © 2011-2022 走看看