zoukankan      html  css  js  c++  java
  • Pytorch系列教程-使用字符级RNN生成姓名

    前言

    本系列教程为pytorch官网文档翻译。本文对应官网地址:https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html

    系列教程总目录传送门:我是一个传送门

    本系列教程对应的 jupyter notebook 可以在我的Github仓库下载:

    下载地址:https://github.com/Holy-Shine/Pytorch-notebook

    我们仍然使用手工搭建的包含几个线性层的小型RNN。与之前的预测姓名最大的区别是:它不是“阅读”输入的所有字符然后生成一个预测分类,而是输入一个分类然后在每个时间步生成一个字母。循环预测字母来形成一个语言的语句通常被视作语言模型

    1. 准备数据

    数据下载通道: 点击这里下载数据集。解压到当前工作目录。

    就和上个预测姓名分类的教程一样,我们有一个姓名文件夹 data/names/[language].txt ,每个姓名一行。我们将它转化为一个 array, 转为ASCII字符,最后生成一个字典 {language: [name1, name2,...]}

    from __future__ import unicode_literals, print_function, division
    from io import open
    import glob
    import os
    import unicodedata
    import string
    
    all_letters = string.ascii_letters + " .,;'-"
    n_letters = len(all_letters) + 1 # Plus EOS marker
    
    def findFiles(path): return glob.glob(path)
    
    # Turn a Unicode string to plain ASCII, thanks to http://stackoverflow.com/a/518232/2809427
    def unicodeToAscii(s):
        return ''.join(
            c for c in unicodedata.normalize('NFD', s)
            if unicodedata.category(c) != 'Mn'
            and c in all_letters
        )
    
    # Read a file and split into lines
    def readLines(filename):
        lines = open(filename, encoding='utf-8').read().strip().split('
    ')
        return [unicodeToAscii(line) for line in lines]
    
    # Build the category_lines dictionary, a list of lines per category
    category_lines = {}
    all_categories = []
    for filename in findFiles('data/names/*.txt'):
        category = os.path.splitext(os.path.basename(filename))[0]
        all_categories.append(category)
        lines = readLines(filename)
        category_lines[category] = lines
    
    n_categories = len(all_categories)
    
    if n_categories == 0:
        raise RuntimeError('Data not found. Make sure that you downloaded data '
            'from https://download.pytorch.org/tutorial/data.zip and extract it to '
            'the current directory.')
    
    print('# categories:', n_categories, all_categories)
    print(unicodeToAscii("O'Néàl"))
    

    out:

    # categories: 18 ['Arabic', 'Chinese', 'Czech', 'Dutch', 'English', 'French', 'German', 'Greek', 'Irish', 'Italian', 'Japanese', 'Korean', 'Polish', 'Portuguese', 'Russian', 'Scottish', 'Spanish', 'Vietnamese']
    O'Neal
    

    2. 搭建网络

    新的网络结果扩充了姓名识别的RNN网络,它的输入增加了一个分类Tensor,该张量同样参与与其他输入的结合(concatenate)。分类张量也是一个one-hot向量。

    我们将输出解释为下一个字母的概率。采样时,最可能的输出字母用作下一个输入字母。

    同时,模型增加了第二个线性层(在隐藏层的输出组合之后),从而增强其性能。后续一个 dropout 层,它随机将输入置0(这里的概率设置为0.1),一般用来模糊输入来达到规避过拟合的问题。在这里,我们将它用于网络的末端,故意添加一些混乱进而增加采样种类。

    网络模型如下所示:

    import torch
    import torch.nn as nn
    
    class RNN(nn.Module):
        def __init__(self, input_size, hidden_size, output_size):
            super(RNN,self).__init__()
            self.hidden_size = hidden_size
            
            self.i2h = nn.Linear(n_categories + input_size + hidden_size, hidden_size)
            self.i2o = nn.Linear(n_categories + input_size + hidden_size, output_size)
            self.o2o = nn.Linear(hidden_size + output_size, output_size)
            self.dropout = nn.Dropout(0.1)
            self.softmax = nn.LogSoftmax(dim=1)
            
        def forward(self, category, input, hidden):
            input_combined = torch.cat([category, input, hidden],dim=1)
            hidden = self.i2h(input_combined)
            output = self.i2o(input_combined)
            output_combined = torch.cat([hidden,output],1)
            output = self.o2o(output_combined)
            output = self.dropout(output)
            output = self.softmax(output)
            return output, hidden
        
        def initHidden(self):
            return torch.zeros(1, self.hidden_size)
    

    3. 训练

    3.1 训练准备

    首先,辅助函数用来获取(category, line)对:

    import random
    
    # Random item from a list
    def randomChoice(l):
        return l[random.randint(0, len(l)-1)]
    
    # Get a random category and random line from that category
    def randomTrainingPair():
        category = randomChoice(all_categories)
        line = randomChoice(category_lines[category])
        return category, line
    

    对于每个时间步(训练词语的每个字母),网络的输入为 (category, current letter, hidden state), 输出为 (next letter, next hidden state)。因此对于每个训练集,我们需要一个分类,一个输入字母集合,还有一个目标字母集合。

    由于我们需要在每个时间步通过当前字母来预测下一个字母,字母对的形式应该类似于这样,比如 "ABCD<EOS>" , 则我们会构建('A','B'),('B','C'),('C','D'),('D','E'),('E','EOS')。

    用图来表示如下:

    分类张量是一个one-hot张量,大小为 <1 x n_categories>。在训练的每个时间步我们都将其作为输入。这是众多设计选择的一个,它同样可以作为初始隐藏状态或其他策略的一部分。

    # one-hot vector for category
    def categoryTensor(category):
        li = all_categories.index(category)
        tensor = torch.zeros(1, n_categories)
        tensor[0][li]=1
        return tensor
    
    # one-hot matrix of first to last letters (not including EOS) for input
    def inputTensor(line):
        tensor = torch.zeros(len(line),1, n_letters)
        for li in range(len(line)):
            letter = line[li]
            tensor[li][0][all_letters.find(letter)]=1
        return tensor
    
    # LongTensor of second letter to end(EOS) for target
    def targetTensor(line):
        letter_indexes = [all_letters.find(line[li]) for li in range(1, len(line))]
        letter_indexes.append(n_letters-1)  # EOS
        return torch.LongTensor(letter_indexes)
    

    方便起见,在训练过程中我们使用randomTrainingExample 函数来获取一个随机的 (category, line) 对,然后将其转化为输入要求的 (category, input, target) 张量

    # make category, input, and target tensors from a random category, line pair
    def randomTrainingExample():
        category, line = randomTrainingPair()
        category_tensor = categoryTensor(category)
        input_line_tensor = inputTensor(line)
        target_line_tensor = targetTensor(line)
        return category_tensor, input_line_tensor, target_line_tensor
    

    3.2 训练网络

    与分类相反,分类仅仅使用最后一层输出,这里我们使用每个时间步的输出作为预测,所以我们需要计算每个时间步的损失

    autograd 的魔力使你能够简单的将所有时间步的loss相加,然后在最后反向传播。

    criterion = nn.NLLLoss()
    
    learning_rate = 0.0005
    
    def train(category_tensor, input_line_tensor, target_line_tensor):
        target_line_tensor.unsqueeze_(-1)
        hidden = rnn.initHidden()
        
        rnn.zero_grad()
        
        loss = 0
        
        for i in range(input_line_tensor.size(0)):
            output, hidden = rnn(category_tensor, input_line_tensor[i], hidden)
            l = criterion(output, target_line_tensor[i])
            loss+=l
            
        loss.backward()
        
        for p in rnn.parameters():
            p.data.add_(-learning_rate, p.grad.data)
            
        return output, loss.item() / input_line_tensor.size(0)
    

    为了跟踪训练时间,这里添加了一个 timeSince(timestep)函数,该函数返回一个可读字符串

    import time
    import math
    
    def timeSince(since):
        now = time.time()
        s = now - since
        m = math.floor(s/60)
        s -= m*60
        return '%dm %ds' %(m,s)
    

    训练依旧很花时间-调用训练函数多次,并在每个 print_every 样本后打印损失,同时在每个 plot_every 样本后保存损失到 all_losses 方便后续的可视化损失

    rnn = RNN(n_letters, 128, n_letters)
    
    n_iters = 100000
    print_every = 5000
    plot_every = 500
    all_losses = []
    total_loss = 0 # Reset every plot_every iters
    
    start = time.time()
    
    for iter in range(1, n_iters + 1):
        output, loss = train(*randomTrainingExample())
        total_loss += loss
    
        if iter % print_every == 0:
            print('%s (%d %d%%) %.4f' % (timeSince(start), iter, iter / n_iters * 100, loss))
    
        if iter % plot_every == 0:
            all_losses.append(total_loss / plot_every)
            total_loss = 0
    

    out:

    0m 17s (5000 5%) 2.1339
    0m 34s (10000 10%) 2.3110
    0m 53s (15000 15%) 2.2874
    1m 13s (20000 20%) 3.5956
    1m 33s (25000 25%) 2.4674
    1m 52s (30000 30%) 2.3219
    2m 9s (35000 35%) 3.0257
    2m 27s (40000 40%) 2.5090
    2m 45s (45000 45%) 1.9921
    3m 4s (50000 50%) 2.0124
    3m 22s (55000 55%) 2.8580
    3m 41s (60000 60%) 2.4451
    3m 59s (65000 65%) 3.1174
    4m 16s (70000 70%) 1.7301
    4m 34s (75000 75%) 2.9455
    4m 52s (80000 80%) 2.3166
    5m 9s (85000 85%) 1.2998
    5m 27s (90000 90%) 2.1184
    5m 45s (95000 95%) 2.6679
    6m 3s (100000 100%) 2.4100
    

    3.3 打印损失

    import matplotlib.pyplot as plt
    import matplotlib.ticker as ticker
    %matplotlib inline
    plt.figure()
    plt.plot(all_losses)
    

    out:

    4. 网络示例

    为了示例,我们给网络输入一个字母并询问下一个字母是什么,下一个字母再作为下下个字母的预测输入,直到输出EOS token

    • 创建输入分类的Tensor, 初始字母和空的隐藏状态
    • 输出 output_name ,包含初始的字母
    • 最大输出长度,
      • 将当前字母输入网络
      • 获取最大可能输出,和下一个的隐藏状态
      • 如果字母是EOS,则停止
      • 如果是一般字母,则加到output_name,继续
    • 返回最后的姓名单词

    另一种策略是不需要给网络决定一个初始字母,而是在训练时包含字符串开始标记,并让网络选择自己的初始字母

    max_length = 20
    
    # sample from a category and starting letter
    def sample(category, start_letter='A'):
        with torch.no_grad(): # no need to track history in sampling
            category_tensor = categoryTensor(category)
            input = inputTensor(start_letter)
            hidden = rnn.initHidden()
            
            output_name = start_letter
            
            for i in range(max_length):
                output, hidden = rnn(category_tensor, input[0],hidden)
                topv, topi = output.topk(1)
                topi = topi[0][0]
                if topi == n_letters -1:
                    break
                else:
                    letter = all_letters[topi]
                    output_name+=letter
                input = inputTensor(letter)
                
            return output_name
        
    # get multiple samples from one category and multiple starting letters
    def samples(category, start_letters='ABC'):
        for start_letter in start_letters:
            print(sample(category, start_letter))
            
    samples('Russian', 'RUS')
    
    samples('German', 'GER')
    
    samples('Spanish', 'SPA')
    
    samples('Irish', 'O')
    

    out:

    Ramanovov
    Uarin
    Shavani
    Garen
    Eren
    Roure
    Sangara
    Pare
    Allan
    Ollang
    
  • 相关阅读:
    html+css动态篇
    html+css定位篇
    首页的css
    display详细说明
    html+css 布局篇
    html+css杂记
    JS与ES的关系
    H5本地存储
    JavaScript面向对象
    JavaScript执行上下文
  • 原文地址:https://www.cnblogs.com/HolyShine/p/9845887.html
Copyright © 2011-2022 走看看