课程目标
完成本课程的学习后,您应该能够:
优化器的类型:
基于规则的优化器(RBO,Rule-Based Optimizer)
基于成本的优化器(CBO,Cost-Based Optimizer)
1.1 RBO
基于规则的优化器诞生于早期关系型数据库,它的原理是基于一系列规则的优先顺序来分析出执行计划,以判断最优查询路径。
其中,排名越靠前,Oracle认为效率越高。例如:按索引访问的效率肯定高于全表扫描,多字段复合索引的效率高于单字段索引,等等。通俗地讲,RBO就是不关心被访问对象的实际数据分布情况、索引效率等,仅凭想象去决定应该如何去访问数据库。可见,RBO是一种非常粗放型的优化器。
RBO的优缺点:
缺点:
通过固定的规则来判断执行计划,容易制定出恶性执行计划。
不通过统计信息来判断,使得误差较大。
优点:
RBO的判断有规可循、有律可依,方便用户对优化器的选择进行正确的预测,可以按照我们所期望的方法引导优化器制定执行计划。
1.2 CBO
基于成本的优化器是关系型数据库所追求的理想型优化器,它的原理是计算了所有查询方法所需要的成本之后,从中选择一个成本最小的查询路径。
分析----CBO的数据来源
CBO在判断最优路径时,需要通过分析相关的统计信息,这些信息包括:
表中的行数
数据块数
每个数据块中的平均行数
行的平均长度
每个列常数的种类
离散程度(直方图)
列值中null的个数
聚簇因子
索引的高度
最大最小值
叶块的数量
运行系统的IO和CPU的使用情况
select * from user_tables; select * from user_indexes;
CBO的优缺点:
缺点:
优点:
a.通过统计信息对所要执行的sql进行解析,在可能存在的执行计划中进行选择,之后制定出临时的执行计划。
b.优化器通过对直方图、表的存储结构特征、索引的结构、分区类型、比较运算符等信息进行分析之后计算出各个执行计划的成本。
c.优化器对各个执行计划的成本进行比较,并从中选择一个成本最低的执行计划。
优化器的组成
a.查询转换器
b.成本估算器
c.执行计划生成器
查询转换包括:
视图合并
子查询解嵌套
谓词前推
使用物化视图进行查询重写
drop table test1 purge; drop table test2 purge; create table test1 as select * from dba_objects where rownum <=100; create table test2 as select * from dba_objects where rownum <=1000; exec dbms_stats.gather_table_stats(user,'test1'); exec dbms_stats.gather_table_stats(user,'test2'); select count(1) from test1 t1,test2 t2 where t1.object_id=t2.object_id; select count(1) from test1 t1 where t1.object_id in (select t2.object_id from test2 t2); select count(1) from test1 t1 where exists (select 1 from test2 t2 where t1.object_id = t2.object_id); --查看UNPARSED QUERY IS出即是查询转换 Alter system flush shared_pool; alter session set tracefile_identifier = '1111'; alter session set events '10053 trace name context forever, level 1'; select count(1) from test1 t1,test2 t2 where t1.object_id=t2.object_id; alter session set events '10053 trace name context off' ; Alter system flush shared_pool; alter session set tracefile_identifier = 'in'; alter session set events '10053 trace name context forever, level 1'; select count(1) from test1 t1 where t1.object_id in (select t2.object_id from test2 t2); alter session set events '10053 trace name context off' ; Alter system flush shared_pool; alter session set tracefile_identifier = 'exists'; alter session set events '10053 trace name context forever, level 1'; select count(1) from test1 t1 where exists (select 1 from test2 t2 where t1.object_id = t2.object_id); alter session set events '10053 trace name context off' ; Set autotrace traceonly select count(1) from test1 t1,test2 t2 where t1.object_id=t2.object_id; select count(1) from test1 t1 where t1.object_id in (select t2.object_id from test2 t2); select count(1) from test1 t1 where exists (select 1 from test2 t2 where t1.object_id = t2.object_id); Set autotrace off
1.2.1CBO为什么不走索引
为什么有时明显会走索引的情况却不走索引?
Drop table tt purge; create table tt as select * from dba_objects; create index ind_status on tt(status); exec dbms_stats.gather_table_stats(user,'TT',cascade=>true); set autotrace traceonly set timing on set linesize 1000 update tt set status='INVALID' where object_id in (10); Commit; select * from tt where status='INVALID'; exec dbms_stats.gather_table_stats(user,'TT',cascade=>true); select * from tt where status='INVALID';
RULE:基于规则的方式。
CHOOSE (默认) :如果有统计信息,走CBO;如果没有统计信息且动态采集级别设置为0,走RBO。
CBO优化器有两种可选的运行模式:
FIRST_ROWS:以最低的成本返回查询的最先几行。
ALL_ROWS:以最低的成本返回所有行。
drop table test purge; create table test as select * from dba_objects; insert /*+append*/ into test select * from test; Commit; insert /*+append*/ into test select * from test; Commit; insert /*+append*/ into test select * from test; Commit; insert /*+append*/ into test select * from test; Commit; insert /*+append*/ into test select * from test; commit; select count(*) from test; create index idx_name on test(owner,object_name) nologging; exec dbms_stats.gather_table_stats(user,'TEST',cascade=>true); Set timing on Set autotrace traceonly Set linesize 1000 SELECT /*+all_rows*/* FROM (SELECT /*+all_rows*/ INNER_TABLE.*, ROWNUM OUTER_TABLE_ROWNUM FROM (select /*+all_rows*/ owner, object_name, created from test where owner = 'SYS' order by object_name) INNER_TABLE WHERE rownum <= 18) WHERE OUTER_TABLE_ROWNUM > 1; SELECT /*+first_rows(18)*/* FROM (SELECT /*+first_rows(18)*/ INNER_TABLE.*, ROWNUM OUTER_TABLE_ROWNUM FROM (select /*+first_rows(18)*/ owner, object_name, created from test where owner = 'SYS' order by object_name) INNER_TABLE WHERE rownum <= 18) WHERE OUTER_TABLE_ROWNUM > 1;
2.执行计划
执行计划的重要性:当分析一条SQL语句的性能时,通常最先做的事情就是分析它的执行计划,如果连执行计划都看不懂,那SQL调优根本无从谈起。
执行计划:从表中读出数据并且生成查询语句所要求结果的查询路径。简单点说是SQL语句访问和处理数据的方式。
执行计划的类型:执行计划的最基本类型实际上就是查询且读取物理数据的方式,该方式被称为扫描。当需要从一个以上的表中读取数据时,必然需要将这些表进行连接,这样的执行类型被称为表连接。
全表扫描(full table scan)扫描对象表中高水位线以下的所有数据块,包括空数据块,同时通过对where 条件中查询条件的过滤来筛选出满足所有条件的数据行的过程。
drop table test purge; create table test as select * from dba_objects; exec dbms_stats.gather_table_stats(user,'test'); set autotrace traceonly select * from test where object_id=100; create index ind_object_id on test(object_id) nologging; select * from test where object_id=100;
Access Predicate在访问数据时做判断,不满足条件的数据不会形成Row Source;
Filter Predicate对已产生的Row Source再做判断,不满足条件的则被丢弃(Throw-Away)。
而降低执行计划中的Throw-Away是我们做SQL调优的一项重要参考指标,因此,一些将Filter Predicate转为Access Predicate的方法也是我们的重要调优手段。
索引扫描类型:
drop table test purge; create table test as select * from dba_objects where object_id is not null; alter table test modify object_id not null; create unique index ind_object_id on test(object_id) nologging; create index ind_object_name on test(object_name) nologging; exec dbms_stats.gather_table_stats(user,'test',cascade => true); set autotrace trace exp --索引唯一扫描: select * from test where object_id = 100; --索引范围扫描 select * from test where object_name = 'C_COBJ#'; select * from test where object_id < 100; --索引降序范围扫描 select * from test where object_id >100 and object_id <110 order by object_id desc; --索引全扫描 select * from test order by object_id; --索引快速全扫描 select object_id from test; --索引跳跃式扫描 drop index ind_object_id; create index ind_type_id on test(object_type,object_id); select * from test where object_id=100; --位图索引 create bitmap index bit_status on test(status); select count(*) from test where status='VALID';
表连接类型:
访问次数:驱动表返回几条,被驱动表访问多少次。
驱动表是否有顺序:有。
是否要排序:否。
应用场景: 1. 关联中有一个表比较小;
2. 被关联表的关联字段上有索引;
3. 索引的键值不应该重复率很高。
通过实验一起来探究nested loops join的原理吧!
set linesize 1000 Set pagesize 100 drop table test1 purge; drop table test2 purge; create table test1 as select * from dba_objects where rownum <=100; create table test2 as select * from dba_objects where rownum <=1000; exec dbms_stats.gather_table_stats(user,'test1'); exec dbms_stats.gather_table_stats(user,'test2');
默认为typical的时,除了plan_executetion_statistics和OS Statistics不能收集外,其他的都可以收集
all,所有的都要收集。
alter session set statistics_level=all; select count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id;
Starts为该sql执行的次数。
E-Rows为执行计划预计的行数。
A-Rows为实际返回的行数。A-Rows跟E-Rows做比较,就可以确定哪一步执行计划出了问题。
A-Time为每一步实际执行的时间(HH:MM:SS.FF),根据这一行可以知道该sql耗时在了哪个地方。
Buffers为每一步实际执行的逻辑读或一致性读。
Reads为物理读。
OMem、1Mem为执行所需的内存评估值,0Mem为最优执行模式所需内存的评估值,1Mem为one-pass模式所需内存的评估值。
0/1/M 为最优/one-pass/multipass执行的次数。
Used-Mem耗的内存
select /*+leading(t1) use_nl(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id; select * from table(dbms_xplan.display_cursor(null,null,'allstats last')); select /*+leading(t1) use_nl(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id and t1.object_id in (10, 11, 12); select * from table(dbms_xplan.display_cursor(null,null,'allstats last')); select /*+leading(t1) use_nl(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id and t1.object_id =10; select * from table(dbms_xplan.display_cursor(null,null,'allstats last')); select /*+leading(t1) use_nl(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id and t1.object_id =99999;
驱动表的顺序对性能的影响(看Buffers),大表驱动好,还是小表驱动好? select /*+leading(t1) use_nl(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id; select * from table(dbms_xplan.display_cursor(null,null,'allstats last')); select /*+leading(t2) use_nl(t1)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id; select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));
Drop table t_xiao purge; Drop table t_da purge; create table t_xiao(a1 number(10)); create table t_da(a2 number(10)); begin for i in 1 .. 10 loop insert into t_xiao values(i); end loop; commit; end; / begin for i in 1 .. 100000 loop insert into t_da values(i); end loop; commit; end; / exec dbms_stats.gather_table_stats(user,'t_xiao'); exec dbms_stats.gather_table_stats(user,'t_da'); Set autotrace traceonly select /*+leading(t1,t2) use_nl(t1,t2)*/ * from t_xiao t1,t_da t2 where t1.a1 = t2.a2; select /*+leading(t2,t1) use_nl(t2,t1)*/ * from t_xiao t1,t_da t2 where t1.a1 = t2.a2; Set autotrace off select s.segment_name,s.blocks from user_segments s where s.segment_name in('T_XIAO','T_DA');
2.3.1表连接的执行计划-哈希连接
哈希连接(hash join):
访问次数:驱动表和被驱动表都只会访问0次或1次。
驱动表是否有顺序:有。
是否要排序:否。
应用场景: 1. 一个大表,一个小表的关联;
2. 表上没有索引;
3. 返回结果集比较大。
通过实验一起来探究hash join的原理吧!
set linesize 1000 Set pagesize 100 drop table test1 purge; drop table test2 purge; create table test1 as select * from dba_objects where rownum <=100; create table test2 as select * from dba_objects where rownum <=1000; exec dbms_stats.gather_table_stats(user,'test1'); exec dbms_stats.gather_table_stats(user,'test2'); alter session set statistics_level=all; select /*+leading(t1) use_hash(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id; select * from table(dbms_xplan.display_cursor(null,null,'allstats last')); select /*+leading(t1) use_hash (t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id and t1.object_id = 99999; select * from table(dbms_xplan.display_cursor(null,null,'allstats last')); select /*+leading(t1) use_hash (t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id and 1=2; select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));
select /*+leading(t1) use_hash(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id; select * from table(dbms_xplan.display_cursor(null,null,'allstats last')); select /*+leading(t2) use_hash(t1)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id; select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));
Drop table t_xiao purge; Drop table t_da purge; create table t_xiao(a1 number(10)); create table t_da(a2 number(10)); begin for i in 1 .. 10 loop insert into t_xiao values(i); end loop; commit; end; / begin for i in 1 .. 100000 loop insert into t_da values(i); end loop; commit; end; / exec dbms_stats.gather_table_stats(user,'t_xiao'); exec dbms_stats.gather_table_stats(user,'t_da'); Set autotrace traceonly select /*+leading(t1,t2) use_hash(t1,t2)*/ * from t_xiao t1,t_da t2 where t1.a1 = t2.a2; select /*+leading(t2,t1) use_hash(t2,t1)*/ * from t_xiao t1,t_da t2 where t1.a1 = t2.a2;
2.3.2表连接的执行计划-排序合并连接
排序合并连接(sort merge join):
访问次数:两张表都只会访问0次或1次。
驱动表是否有顺序:无。
是否要排序:是。
应用场景:当结果集已经排过序。
通过实验一起来探究 sort merge join 的原理吧!
set linesize 1000 drop table test1 purge; drop table test2 purge; create table test1 as select * from dba_objects where rownum <=100; create table test2 as select * from dba_objects where rownum <=1000; exec dbms_stats.gather_table_stats(user,'test1'); exec dbms_stats.gather_table_stats(user,'test2'); alter session set statistics_level=all; select /*+ ordered use_merge(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id; select * from table(dbms_xplan.display_cursor(null,null,'allstats last')); select /*+ ordered use_merge(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id and t1.object_id = 99999; select * from table(dbms_xplan.display_cursor(null,null,'allstats last')); select /*+ ordered use_merge(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id and 1=2; select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));
Drop table t_xiao purge; Drop table t_da purge; create table t_xiao(a1 number(10)); create table t_da(a2 number(10)); begin for i in 1 .. 10 loop insert into t_xiao values(i); end loop; commit; end; / begin for i in 1 .. 100000 loop insert into t_da values(i); end loop; commit; end; / exec dbms_stats.gather_table_stats(user,'t_xiao'); exec dbms_stats.gather_table_stats(user,'t_da'); Set autotrace traceonly select /*+ leading(t1) use_merge(t2)*/ * from t_xiao t1,t_da t2 where t1.a1 = t2.a2; select /*+ leading(t2) use_merge(t1)*/ * from t_xiao t1,t_da t2 where t1.a1 = t2.a2;
2.3.3表连接的执行计划-笛卡尔连接
笛卡尔连接(cartestian join):
在开发要消除它,它可能由下列几种情况引起:
SQL逻辑有问题,表之间没有关联关系;
表统计信息没有收集,产生错误的执行计划;
SQL过于复杂,CBO给出错误的执行计划。
drop table test1 purge; drop table test2 purge; create table test1 as select * from dba_objects where rownum <=8000; create table test2 as select * from dba_objects where rownum <=8000; exec dbms_stats.gather_table_stats(user,'test1'); exec dbms_stats.gather_table_stats(user,'test2'); Set autotrace traceonly Select count(*) from test1,test2;
2.3.4表连接的执行计划-半连接
半连接(semi join):
由各种运算所构成的子查询与主查询之间的连接。尽管子查询的种类众多,但其都是一种为实现子查询与主查询之间连接的表连接。
in 和 exists原理及效率
not in 和 not exists原理及效率
drop table test1 purge; drop table test2 purge; create table test1 as select * from dba_objects where rownum <=1000; create table test2 as select * from dba_objects; exec dbms_stats.gather_table_stats(user,'test1'); exec dbms_stats.gather_table_stats(user,'test2'); Set autotrace traceonly --in 和exist原理和效率 select count(*) from test1 where object_id in(select object_id from test2); select count(*) from test1 t1 where exists (select 1 from test2 t2 where t1.object_id=t2.object_id); --not in 和not exist原理和效率 select count(*) from test1 where object_id not in(select object_id from test2); select count(*) from test1 t1 where not exists (select 1 from test2 t2 where t1.object_id=t2.object_id); --再看not in 和not exist的效率 Set autotrace off drop table test1 purge; drop table test2 purge; create table test1 as select * from dba_objects where rownum <=5; create table test2 as select * from dba_objects; Insert into test2 select * from dba_objects; Insert into test2 select * from test2; Insert into test2 select * from test2; Commit; exec dbms_stats.gather_table_stats(user,'test1'); exec dbms_stats.gather_table_stats(user,'test2'); Set autotrace traceonly select count(*) from test1 where object_id not in(select object_id from test2); select count(*) from test1 t1 where not exists (select 1 from test2 t2 where t1.object_id=t2.object_id);
--值得注意的是:如果子查询的关联字段中存在null,not in 查出的结果是不正确的。 set autotrace off Update test1 set object_id = null where rownum <10; Commit; select count(*) from test2 t2 where t2.object_id not in(select t1.object_id from test1 t1); select count(*) from test2 t2 where not exists (select 1 from test1 t1 where t1.object_id=t2.object_id); --not in 和 not exists等价 Oracle 10g下 select count(*) from test2 where object_id not in(select t1.object_id from test1 t1 where T1.object_id is not null) and object_id is not null; select count(*) from test2 t1 where not exists (select 1 from test1 t2 where t1.object_id=t2.object_id); Oracle 11g下在没有null的情况下就相同了 drop table test1 purge; drop table test2 purge; create table test1 as select * from dba_objects where rownum <=1000; create table test2 as select * from dba_objects; exec dbms_stats.gather_table_stats(user,'test1'); exec dbms_stats.gather_table_stats(user,'test2'); select count(*) from test2 t2 where t2.object_id not in(select t1.object_id from test1 t1); select count(*) from test2 t2 where not exists (select 1 from test1 t1 where t1.object_id=t2.object_id); Set autotrace traceonly select count(*) from test2 t2 where t2.object_id not in(select t1.object_id from test1 t1); select count(*) from test2 t2 where not exists (select 1 from test1 t1 where t1.object_id=t2.object_id); Set autotrace off Update test1 set object_id = null where rownum <10; Commit; select count(*) from test2 t2 where t2.object_id not in(select t1.object_id from test1 t1); select count(*) from test2 t2 where not exists (select 1 from test1 t1 where t1.object_id=t2.object_id);
2.3.5表连接的执行计划-外连接
外连接(outer join):
是指以将要连接的两个表中的某个表为基准,即使连接时另一个对象表中没有找到对应的行,也同样要返回基准表中所有行的一种连接方式。
drop table test1 purge; drop table test2 purge; create table test1 as select * from dba_objects where rownum <=1000; create table test2 as select * from dba_objects; exec dbms_stats.gather_table_stats(user,'test1'); exec dbms_stats.gather_table_stats(user,'test2'); Set autotrace traceonly select * from test1 t1,test2 t2 where t1.object_id(+) = t2.object_id;
2.3.6表连接的执行计划-索引连接
索引连接(index join):
在某个查询语句中所使用到的某个列存在一个以上的索引时,按照哈希连接方式将这些索引连接起来的方法。也就是说不是通过读取索引再读取表的方式,而是只通过索引连接来实现数据查询的方法。
drop table test1 purge; drop table test2 purge; create table test1 as select * from dba_objects; create table test2 as select * from dba_objects where rownum <=1000; Create index ind_t1_object_id on test1(object_id) nologging; Create index ind_t1_object_type on test1(object_type) nologging; Create index ind_t2_object_id on test2(object_id) nologging; exec dbms_stats.gather_table_stats(user,'test1',cascade=>true); exec dbms_stats.gather_table_stats(user,'test2',cascade=>true); Set autotrace traceonly select /*+index_join(t1)*/ object_id,object_type from test1 t1 where object_id=100 and object_type='TABLE'; select t1.object_id from test1 t1,test2 t2 where t1.object_id = t2.object_id;
2.3.7各类连接的限制场景
哈希连接不支持不等值<>,不支持> 、<的连接方式,也不支持like 的连接方式。
排序合并连接不支持不等值<>,也不支持like 的连接方式,但支持> 的连接的条件。
嵌套循环无限制。
drop table test1 purge; drop table test2 purge; create table test1 as select * from dba_objects where rownum<100; create table test2 as select * from dba_objects where rownum<1000; exec dbms_stats.gather_table_stats(user,'test1'); exec dbms_stats.gather_table_stats(user,'test2'); Set autotrace traceonly --<>实验 select /*+leading(t1) use_hash(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id <> t2.object_id; --like实验 select /*+leading(t1) use_hash(t2)*/count(*) from test1 t1, test2 t2 where t1.object_type like t2.object_type; --这种like是可以的 select /*+leading(t1) use_hash(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id and t1.object_type like '%TABLE%'; -- >实验 select /*+leading(t1) use_hash(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id > t2.object_id ; --这种>是可以的 select /*+leading(t1) use_hash(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id and t1.object_id >100;
select /*+leading(t1) use_merge(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id <> t2.object_id ; select /*+leading(t1) use_merge(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id like t2.object_id ; select /*+leading(t1) use_merge(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id > t2.object_id ;
2.3.8其他运算方式的执行计划- IN-list 迭代
IN-list 迭代执行计划(INLIST ITERATOR):
在inlist interator 之下的查询过程被反复执行了多次,执行次数有in 中的值个数决定。
drop table test1 purge; create table test1 as select * from dba_objects; Create index ind_t1_object_id on test1(object_id) nologging; exec dbms_stats.gather_table_stats(user,'test1',cascade=>true); Set autotrace traceonly Select * from test1 where object_id in(7,8,9,10); Select * from test1 where object_id =7 or object_id =8 or object_id =9 or object_id =10;
2.3.9其他运算方式的执行计划-连锁
连锁执行计划(CONCATENATION):
是指在使用or连接由不同列所构成的查询条件的情况下,按照各个查询条件将整个查询分成多个独立的查询,为各个独立查询制定最优查询路径后再将其连接起来的执行计划。
drop table test1 purge; create table test1 as select * from dba_objects; Create index ind_t1_object_id on test1(object_id) nologging; Create index ind_t1_object_type on test1(object_type) nologging; exec dbms_stats.gather_table_stats(user,'test1',cascade=>true); Set autotrace traceonly Select * from test1 where object_id=100 or object_type='TABLE';
2.4.0其他运算方式的执行计划-排序操作
排序操作执行计划:
sort(unique) 是指把输出结果变为唯一集合的过程,查询中用到了distinct 。
sort(aggregate) 是指在没有group by 的前提下,使用统计函数对全部数据进行运算时所显示的执行计划。在使用sum、count、min、max、avg等统计函数时并不执行我们所熟悉的一般排序。
sort(group by) 该操作是将数据行向不同分组中聚集的操作,即依据查询语句中所使用的group by 而进行的相关操作,为了进行分组就只能进行排序,因此所需分组的数据量越大则代价就越高。
sort(order by) 在查询语句中使用了order by。
drop table test1 purge; create table test1 as select * from dba_objects; exec dbms_stats.gather_table_stats(user,'test1'); Set autotrace traceonly --sort(unique) select distinct object_id from test1 order by object_id; --sort(aggregate) select sum(object_id) from test1; --sort(group by) select object_type,count(*) from test1 group by object_type; --sort(order by) select * from test1 order by object_id;
2.4.1其他运算方式的执行计划-集合操作
集合操作执行计划:
SQL是处理集合的语言,包含读取集合、进行集合运算、输出集合。
并集(union 、union all)
交集(intersect)
差集(minus)
drop table test1 purge; drop table test2 purge; create table test1 as select * from dba_objects; create table test2 as select * from dba_objects where rownum <=1000; exec dbms_stats.gather_table_stats(user,'test1'); exec dbms_stats.gather_table_stats(user,'test2'); Set autotrace traceonly select * from test1 union select * from test2; select * from test1 union all select * from test2; select * from test1 intersect select * from test2; select * from test1 minus select * from test2;
2.4.2其他运算方式的执行计划-COUNT(STOPKEY)
COUNT(STOPKEY)执行计划:
该计划指在查询语句的查询条件中使用了rownum时所显示出来的执行计划。
drop table test1 purge; create table test1 as select * from dba_objects; exec dbms_stats.gather_table_stats(user,'test1'); Set autotrace traceonly select * from test1 where rownum <10;
2.4.3如何获取执行计划
autotrace(最常用的工具) autotrace traceonly explain 没有执行,其他都执行。
Explain plan for 引发硬解析,但并不会执行。
DBMS_XPLAN.DISPLAY_CURSOR 在Shared pool中取执行计划。
SQL_TRACE和10046(神器)
drop table test purge; create table test as select * from dba_objects; exec dbms_stats.gather_table_stats(user,'test1'); Autotrace Set timing on Set autotrace traceonly Select * from test; Set autotrace off 分析AWR时,可以根据SQL_ID找到真实的执行计划,绑定变量,统计信息 select hash_value, child_number, sql_text from v$sql s where s.SQL_ID = '866n2xzvtyndu'; select * from table(dbms_xplan.display_cursor(hash_value, child_number, 'advanced')); 如果想要获得更多的信息 alter session set statistics_level=all; Select count(*) from test; select * from table(dbms_xplan.display_cursor(null,null,'allstats last')); explain plan for explain plan for select * from test; select * from table(dbms_xplan.display);