zoukankan      html  css  js  c++  java
  • 51nod 1594 Gcd and Phi 反演

    OTZ 又被吊打了。。。我当初学的都去哪了???


    思路:反演套路?

    提交:(1)

    题解:

    (sum_{i=1}^{n}sum_{j=1}^{n}varphi(gcd(varphi(i),varphi(j))))

    (c[i]=sum_{j=1}^n[varphi(j)==i])

    有:

    (sum_{i=1}^{n}sum_{j=1}^{n}varphi(gcd(i,j))*c[i]*c[j])

    欧拉反演一下,把(gcd)扔出来

    (sum_{i=1}^{n}sum_{j=1}^{n}sum_{d|gcd(i,j)}varphi(d)*c[i]*c[j]*[gcd(i,j)==d])

    (sum_{d=1}^{n}varphi(d) sum_{i=1}^{lfloor frac{n}{d} floor} sum_{j=1}^{lfloor frac{n}{d} floor} c[i*d]* c[j*d]* [gcd(i,j)==1])

    (sum_{d=1}^{n}varphi(d) sum_{i=1}^{lfloor frac{n}{d} floor}c[i*d] sum_{j=1}^{lfloor frac{n}{d} floor}c[j*d] [gcd(i,j)==1])

    (sum_{d=1}^{n}varphi(d) sum_{i=1}^{lfloor frac{n}{d} floor}c[i*d] sum_{j=1}^{lfloor frac{n}{d} floor}c[j*d] sum_{k|gcd(i,j)} mu(k))

    (sum_{d=1}^{n}varphi(d) sum_{k=1}^{lfloor frac{n}{d} floor} mu(k) sum_{i=1}^{lfloor frac{n}{d*k} floor}c[i*d*k] sum_{j=1}^{lfloor frac{n}{d*k} floor}c[j*d*k])

    (s[i]=sum_{j=1}^{lfloor frac{n}{i} floor} c[i*j]),注意到(s[i])可以在(O(nlogn))计算出来

    (sum_{d=1}^{n} varphi(d) sum_{k=1}^{lfloor frac{n}{d} floor} mu(k) s[d*k]^2)

    交换一下(d)(k),可以优化枚举(见代码)

    (sum_{d=1}^{n} mu(d) sum_{k=1}^{lfloor frac{n}{d} floor} varphi(k) s[d*k]^2)

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #define ll long long
    #define R register ll
    using namespace std;
    namespace Luitaryi {
    template<class I> inline I g(I& x) { x=0;
      register I f=1; register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
      do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
    } const int N=2e6;
    int T,n,cnt,p[N>>1],phi[N+10],mu[N+10],c[N+10];
    ll s[N+10],ans; bool v[N+10];
    inline void PRE() { phi[1]=mu[1]=1;
      for(R i=2;i<=N;++i) {
        if(!v[i]) p[++cnt]=i,phi[i]=i-1,mu[i]=-1;
        for(R j=1;j<=cnt&&i*p[j]<=N;++j) {
          v[i*p[j]]=true;
          if(i%p[j]==0) {
            phi[i*p[j]]=phi[i]*p[j];
            break;
          } phi[i*p[j]]=phi[i]*(p[j]-1);
          mu[i*p[j]]=-mu[i];
        }
      }
    }
    inline void calc(int n) { ans=0;
      memset(c,0,sizeof(c)),memset(s,0,sizeof(s));
      for(R i=1;i<=n;++i) ++c[phi[i]];
      for(R i=1;i<=n;++i) for(R j=1,lim=n/i;j<=lim;++j) s[i]+=c[i*j];
      for(R d=1;d<=n;++d) if(mu[d]) for(R k=1,lim=n/d;k<=lim;++k) //if(mu[d]) 优化枚举
        ans+=mu[d]*phi[k]*s[d*k]*s[d*k];
    }
    inline void main() {g(T); PRE(); while(T--) g(n),calc(n),printf("%lld
    ",ans);}
    } signed main() {Luitaryi::main(); return 0;}
    

    2019.08.11
    89

  • 相关阅读:
    服务命令Linux安装配置apache
    枚举参考hdu2062Subset sequence
    异常选择struts2文件上传产生Source 'xxxx.tmp' does not exist
    序列插入常用排序算法 总结
    代码nullMerge two sorted linked lists
    下载文件win8mp3下载
    希望判断创造、改变世界的基因
    qemulauncher:图形化的QEMU启动器
    Virtual Memory I: the problem
    HIGHMEM
  • 原文地址:https://www.cnblogs.com/Jackpei/p/11337254.html
Copyright © 2011-2022 走看看