zoukankan      html  css  js  c++  java
  • DSO windowed optimization 代码 (1)

    这里不想解释怎么 marginalize,什么是 First-Estimates Jacobian (FEJ)。这里只看看代码,看看Hessian矩阵是怎么构造出来的。

    1 优化流程

    整个优化过程,也是 Levenberg–Marquardt 的优化过程,这个优化过程在函数 FullSystem::makeKeyFrame() 中被调用,也是在确定当前帧成为关键帧,并且用当前帧激活了窗口中其他帧的 immaturePoints 之后。过程在 FullSystem::optimize() 函数中。

    优化的目标值,是所有需要优化点的逆深度、相机的4个内参数、窗口中8个帧的状态量。

    FullSystem::optimize() 函数流程大致如下。首先 FullSystem::linearizeAll(false) 把相关的导数计算一下。然后在所有的 residual 中找到 isLinearized 为 false 的 residual,调用 PointFrameResidual::applyRes(true),设置它们的 PointFrameResidual::ResState (按照 FullSystem::optimizeImmaturePoint 的结果),如果是正常的点(ResState::IN)调用EFResidual::takeDataF()把 EFResidual::JpJdF 设置一下。这就算完成了优化的准备工作。

    随后进入循环体,进行最高有限次的优化循环。每一次优化都有可能使得整体能量升高,所以每次优化前调用 FullSystem::backupState() 保存当前所有待优化参数的 state 和 step,FullSystem::solveSystem() 进行优化(得到的优化变化量 step),FullSystem::doStepFromBackup() 将优化结果生效,FullSystem::linearizeAll(false) 计算新的能量值,如果能量升高了,就使用 FullSystem::loadSateBackup() 将结果回滚。

    在跳出循环体之后调用一次 FullSystem::linearizeAll(true),效果是将优化之后成为 outlier 的 residual 剔除,剩下正常的 residual 调用一次 EFResidual::takeDataF() 计算新的 EFResidual::JpJdF (这里涉及到 FEJ)。注意一下 FullSystem::linearizeAll() 参数为 false 和 true 的区别。

    FullSystem::solveSystem() 设置优化变化量 step 的过程在 EnergyFunctional::resubstituteF_MT() 中,能帮助理解 idepth 是如何更新的(Schur Complement 将 idepth 剔除出最终需要矩阵求逆的系统,然而这些 idepth 的优化变化量 step 是如何计算的?)。

    2 导数准备

    需要遍历每一个 PointFrameResidual 将与这个 Residual 相关的导数计算出来,再进行优化。而这些计算出来的相关导数被存储在 RawResidualJacobian 中。

    https://github.com/JakobEngel/dso/blob/master/src/OptimizationBackend/RawResidualJacobian.h#L32

    在优化过程中 Frame, PointHessian, PointFrameResidual 都有与之对应的实体,分别是 EFFrame, EFPoint, EFResidual。通过保留指针,保存层次之间的索引。

    在计算 RawResidualJacobian 时,是计算 PointFrameResidual 的 J,尔后会将这个 J 转移到 EFResidual 的 J,并且计算 EFResidual::JpJdF,这个过程在 EFResidual::takeDataF() 中。所以这里把 JpJdF 的计算过程写出来,弄清 JpJdF 的意义。

    https://github.com/JakobEngel/dso/blob/5fb2c065b1638e10bccf049a6575ede4334ba673/src/OptimizationBackend/EnergyFunctionalStructs.cpp#L37

    struct RawResidualJacobian
    {
    	EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
    	// ================== new structure: save independently =============.
    	VecNRf resF; // typdef Eigen::Matrix<float,MAX_RES_PER_POINT,1> VecNRf; MAX_RES_PER_POINT == 8
    
    	// the two rows of d[x,y]/d[xi].
    	Vec6f Jpdxi[2];			// 2x6
    
    	// the two rows of d[x,y]/d[C].
    	VecCf Jpdc[2];			// 2x4
    
    	// the two rows of d[x,y]/d[idepth].
    	Vec2f Jpdd;				// 2x1
    
    	// the two columns of d[r]/d[x,y].
    	VecNRf JIdx[2];			// 9x2
    
    	// = the two columns of d[r] / d[ab]
    	VecNRf JabF[2];			// 9x2
    
    
    	// = JIdx^T * JIdx (inner product). Only as a shorthand.
    	Mat22f JIdx2;				// 2x2
    	// = Jab^T * JIdx (inner product). Only as a shorthand.
    	Mat22f JabJIdx;			// 2x2
    	// = Jab^T * Jab (inner product). Only as a shorthand.
    	Mat22f Jab2;			// 2x2
    
    };
    

    以上变量的类型中出现NR,说明该变量是存储了每一个 pattern 点的信息。

    现在将这些变量对应的导数一一列出:

    1. VecNRf resF;对应(r_{21}),1x8,这里的(r_{21})是对于一个点,八个 pattern residual 组成的向量。
    2. Vec6f Jpdxi[2];对应(partial x_2 over partial xi_{21}),2x6,注意这里的(x_2)是像素坐标。(我一般把像素坐标写成(x),对应代码中的变量Ku,归一化坐标写成(x^{prime}),对应代码中的变量u。)
    3. VecCf Jpdc[2];对应(partial x_2 over partial C),2x4,这里的(C)指相机内参(egin{bmatrix} f_x, f_y, c_x, c_yend{bmatrix}^T)
    4. Vec2f Jpdd;对应(partial x_2 over partial ho_1),2x1,注意是对 host 帧的逆深度求导。
    5. VecNRf JIdx[2];对应(partial r_{21} over partial x_2),8x2,这个和 target 帧上的影像梯度相关。
    6. VecNRf JabF[2];对应({partial r_{21} over partial a_{21}}, {partial r_{21} over partial b_{21}}),8x1,8x1。
    7. Mat22f JIdx2;对应({partial r_{21} over partial x_2}^T{partial r_{21} over partial x_2}),2x8 8x2,2x2。
    8. Mat22f JabJIdx;对应({partial r_{21} over partial l_{21}}^T{partial r_{21} over partial x_2}),2x8 8x2,2x2,这里的(l_{21})(egin{bmatrix} a_{21} \ b_{21}end{bmatrix})
    9. Mat22f Jab2;对应({partial r_{21} over partial l_{21}}^T{partial r_{21} over partial l_{21}}),2x8 8x2,2x2。
    10. JpJdF对应(egin{bmatrix} {partial r_{21} over partial xi_{21}}^T{partial r_{21} over partial ho_1} \ {partial r_{21} over partial l_{21}}^T{partial r_{21} over partial ho_1}end{bmatrix}),8x1。

    在 PointFrameResidual::linearize 中对这些变量进行了计算。

    https://github.com/JakobEngel/dso/blob/master/src/FullSystem/Residuals.cpp#L78

    在计算时使用了投影过程中的变量,现在将这些变量与公式对应。投影过程标准公式如下:

    [egin{align} x_2 &= K ho_2 (R_{21} ho_1^{-1} K^{-1} x_1 + t_{21}) otag \ &= K x^{prime}_2 otag end{align}]

    变量的对应关系如下:

    KliP = (K^{-1}x_1) = (x_1^{prime})

    ptp = (R_{21}K^{-1}x_1 + ho_1 t_{21}) = ( ho_2^{-1} ho_1K^{-1}x_2)

    drescale = ( ho_2 ho_1^{-1})

    [u, v, 1]^T = (K^{-1}x_2) = (x_2^{prime})

    [Ku, Kv, 1]^T = (x_2)

    1. Vec2f Jpdd;(partial x_2 over partial ho_1)
    d_d_x = drescale * (PRE_tTll_0[0]-PRE_tTll_0[2]*u)*SCALE_IDEPTH*HCalib->fxl();
    d_d_y = drescale * (PRE_tTll_0[1]-PRE_tTll_0[2]*v)*SCALE_IDEPTH*HCalib->fyl();
    

    计算(partial x_2 over partial ho_1),这个在博客《直接法光度误差导数推导》中已经讲了如何求解。得到的结果是:

    [egin{bmatrix} f_x ho_1^{-1} ho_2(t_{21}^x - u^{prime}_2t_{21}^z) \ f_y ho_1^{-1} ho_2(t_{21}^y - v^{prime}_2t_{21}^z)end{bmatrix} ]

    2.VecCf Jpdc[2];(partial x_2 over partial C)
    d_C_x[2] = drescale*(PRE_RTll_0(2,0)*u-PRE_RTll_0(0,0));
    d_C_x[3] = HCalib->fxl() * drescale*(PRE_RTll_0(2,1)*u-PRE_RTll_0(0,1)) * HCalib->fyli();
    d_C_x[0] = KliP[0]*d_C_x[2];
    d_C_x[1] = KliP[1]*d_C_x[3];
    
    d_C_y[2] = HCalib->fyl() * drescale*(PRE_RTll_0(2,0)*v-PRE_RTll_0(1,0)) * HCalib->fxli();
    d_C_y[3] = drescale*(PRE_RTll_0(2,1)*v-PRE_RTll_0(1,1));
    d_C_y[0] = KliP[0]*d_C_y[2];
    d_C_y[1] = KliP[1]*d_C_y[3];
    
    d_C_x[0] = (d_C_x[0]+u)*SCALE_F;
    d_C_x[1] *= SCALE_F;
    d_C_x[2] = (d_C_x[2]+1)*SCALE_C;
    d_C_x[3] *= SCALE_C;
    
    d_C_y[0] *= SCALE_F;
    d_C_y[1] = (d_C_y[1]+v)*SCALE_F;
    d_C_y[2] *= SCALE_C;
    d_C_y[3] = (d_C_y[3]+1)*SCALE_C;
    

    链式的求导过程。

    [{partial x_2 over partial C} = egin{bmatrix} {partial u_2 over partial f_x} & {partial u_2 over partial f_y} & {partial u_2 over partial c_x} & {partial u_2 over partial c_y} \ {partial v_2 over partial f_x} & {partial v_2 over partial f_y} & {partial v_2 over partial c_x} & {partial v_2 over partial c_y} end{bmatrix} ]

    [egin{align}x_2 &= Kx_2^{prime} otag \ egin{bmatrix} u_2 \ v_2 \ 1 end{bmatrix} &= egin{bmatrix} f_x & 0 & c_x \ 0 & f_y & c_y \ 0 & 0 & 1end{bmatrix} egin{bmatrix} u_2^{prime} \ v_2^{prime} \ 1end{bmatrix} otag end{align}]

    [egin{align} u_2 &= f_x u_2^{prime} + c_x otag \ v_2 &= f_y v_2^{prime} + c_y otag end{align}]

    [egin{align} {partial u_2 over partial f_x} &= u_2^{prime} + f_x {partial u_2^{prime} over partial f_x} otag & {partial u_2 over partial f_y} &= f_x {partial u_2^{prime} over partial f_y} otag \ {partial u_2 over partial c_x} &= f_x {partial u_2^{prime} over partial c_x} + 1 otag & {partial u_2 over partial c_y} &= f_x {partial u_2^{prime} over partial c_y} otag end{align}]

    [egin{align} {partial v_2 over partial f_x} &= f_y {partial v_2^{prime} over partial f_x} otag & {partial v_2 over partial f_y} &= v_2^{prime} + f_y {partial v_2^{prime} over partial f_y} otag \ {partial v_2 over partial c_x} &= f_y {partial v_2^{prime} over partial c_x} otag & {partial v_2 over partial c_y} &= f_y {partial v_2^{prime} over partial c_y} + 1 otag end{align}]

    先求({partial x_2^{prime} over partial C}),再使用链式法则求({partial x_2 over partial C})

    [egin{align} x_2^{prime} &= ho_2 ho_1^{-1}(R_{21}K^{-1}x_1+ ho_1t_{21}) otag \ &= ho_2 ho_1^{-1} R_{21}K^{-1}x_1 + ho_2 t_{21} otag \ &= ho_2 ho_1^{-1} egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33}end{bmatrix} egin{bmatrix} f_x^{-1} & 0 & -f_x^{-1}c_x \ 0 & f_y^{-1} & -f_y^{-1}c_y \ 0 & 0 & 1 end{bmatrix} egin{bmatrix} u_1 \ v_1 \ 1 end{bmatrix} + ho_2 t_{21} otag \ &= ho_2 ho_1^{-1} egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33}end{bmatrix} egin{bmatrix} f_x^{-1}(u_1 - c_x) \ f_y^{-1}(v_1 - c_y) \ 1 end{bmatrix} + ho_2 egin{bmatrix} t_{21}^x \ t_{21}^y \ t_{21}^z end{bmatrix} otag end{align}]

    [egin{align} u_2^{prime} &= frac{ ho_2 ho_1^{-1}(r_{11}f_x^{-1}(u_1 - c_x) + r_{12}f_y^{-1}(v_1-c_y) + r_{13}) + ho_2 t_{21}^x}{ ho_2 ho_1^{-1}(r_{31}f_x^{-1}(u_1 - c_x) + r_{32}f_y^{-1}(v_1-c_y) + r_{33}) + ho_2 t_{21}^z} = frac{A}{C} otag \ v_2^{prime} &= frac{ ho_2 ho_1^{-1}(r_{21}f_x^{-1}(u_1 - c_x) + r_{22}f_y^{-1}(v_1-c_y) + r_{23}) + ho_2 t_{21}^y}{ ho_2 ho_1^{-1}(r_{31}f_x^{-1}(u_1 - c_x) + r_{32}f_y^{-1}(v_1-c_y) + r_{33}) + ho_2 t_{21}^z} = frac{B}{C} otag end{align}]

    (u_2^{prime}, v_2^{prime}) 的分母的计算结果都为 1,但是这个计算过程和内参 (f_x, f_y, c_x, c_y) 都有关系。求导过程不能省略分母,感谢某同学指出我这里认知上的错误。(为方便表达,我用字母替代分子、分母,(C=1)。)

    求导示例:

    [egin{align} {partial u_2^{prime} over partial f_x} &= frac{partial A}{partial f_x} frac{1}{C} + Afrac{1}{C^2}(-1)frac{partial C}{partial f_x} otag \ &= ho_2 ho_1^{-1}r_{11}(u_1-c_x)f_x^{-2}(-1)frac{1}{C} - frac{A}{C}frac{1}{C} ho_2 ho_1^{-1}r_{31}(u_1-c_x)f_x^{-2}(-1) otag \ &= frac{1}{C}( ho_2 ho_1^{-1}r_{11}(u_1-c_x)f_x^{-2}(-1) + ho_2 ho_1^{-1}r_{31}(u_1-c_x)f_x^{-2}u_2^{prime}) otag \ &= ho_2 ho_1^{-1} (r_{31}u_2^{prime}-r_{11})f_x^{-2}(u_1 - c_x) otag end{align}]

    同理得到以下结果:

    [egin{align} {partial u_2^{prime} over partial f_x} &= ho_2 ho_1^{-1} (r_{31}u_2^{prime}-r_{11})f_x^{-2}(u_1 - c_x) otag & {partial u_2^{prime} over partial f_y} &= ho_2 ho_1^{-1}(r_{32}u_2^{prime}-r_{12})f_y^{-2}(v_1 - c_y) otag \ {partial u_2^{prime} over partial c_x} &= ho_2 ho_1^{-1}(r_{31}u_2^{prime}-r_{11})f_x^{-1} otag & {partial u_2^{prime} over partial c_y} &= ho_2 ho_1^{-1}(r_{32}u_2^{prime}-r_{12}) f_y^{-1} otag end{align}]

    [egin{align} {partial v_2^{prime} over partial f_x} &= ho_2 ho_1^{-1} (r_{31}v_2^{prime}-r_{21})f_x^{-2}(u_1 - c_x) otag & {partial v_2^{prime} over partial f_y} &= ho_2 ho_1^{-1}(r_{32}v_2^{prime}-r_{22})f_y^{-2}(v_1 - c_y) otag \ {partial v_2^{prime} over partial c_x} &= ho_2 ho_1^{-1}(r_{31}v_2^{prime}-r_{21})f_x^{-1} otag & {partial v_2^{prime} over partial c_y} &= ho_2 ho_1^{-1}(r_{32}v_2^{prime}-r_{22}) f_y^{-1} otag end{align}]

    链式:

    [egin{align} {partial u_2 over partial f_x} &= u_2^{prime} + f_x {partial u_2^{prime} over partial f_x} otag \ &= u_2^{prime} + ho_2 ho_1^{-1} (r_{31}u_2^{prime}-r_{11})f_x^{-1}(u_1 - c_x) otag \ {partial u_2 over partial f_y} &= f_x {partial u_2^{prime} over partial f_y} otag \ &= f_x f_y^{-1} ho_2 ho_1^{-1}(r_{32} u_2^{prime}-r_{12})f_y^{-1}(v_1 - c_y) otag \ {partial u_2 over partial c_x} &= f_x {partial u_2^{prime} over partial c_x} + 1 otag \ &= ho_2 ho_1^{-1}(r_{31}u_2^{prime}-r_{11}) + 1 otag \ {partial u_2 over partial c_y} &= f_x {partial u_2^{prime} over partial c_y} otag \ &= f_x f_y^{-1} ho_2 ho_1^{-1}(r_{32}u_2^{prime}-r_{12}) otag end{align}]

    [egin{align} {partial v_2 over partial f_x} &= f_y {partial v_2^{prime} over partial f_x} otag \ &= f_y f_x^{-1} ho_2 ho_1^{-1} (r_{31} v_2^{prime}-r_{21})f_x^{-1}(u_1 - c_x) otag \ {partial v_2 over partial f_y} &= v_2^{prime} + f_y {partial v_2^{prime} over partial f_y} otag \ &= v_2^{prime} + ho_2 ho_1^{-1}(r_{32} v_2^{prime}-r_{22})f_y^{-1}(v_1 - c_y) otag \ {partial v_2 over partial c_x} &= f_y {partial v_2^{prime} over partial c_x} otag \ &= f_y f_x^{-1} ho_2 ho_1^{-1}(r_{31} v_2^{prime}-r_{21}) otag \ {partial v_2 over partial c_y} &= f_y {partial v_2^{prime} over partial c_y} + 1 otag \ &= ho_2 ho_1^{-1}(r_{32} v_2^{prime}-r_{22}) + 1 otag end{align}]

    3. Vec6f Jpdxi[2];(partial x_2 over partial xi_{21})
    d_xi_x[0] = new_idepth*HCalib->fxl();
    d_xi_x[1] = 0;
    d_xi_x[2] = -new_idepth*u*HCalib->fxl();
    d_xi_x[3] = -u*v*HCalib->fxl();
    d_xi_x[4] = (1+u*u)*HCalib->fxl();
    d_xi_x[5] = -v*HCalib->fxl();
    
    d_xi_y[0] = 0;
    d_xi_y[1] = new_idepth*HCalib->fyl();
    d_xi_y[2] = -new_idepth*v*HCalib->fyl();
    d_xi_y[3] = -(1+v*v)*HCalib->fyl();
    d_xi_y[4] = u*v*HCalib->fyl();
    d_xi_y[5] = u*HCalib->fyl();
    

    计算(partial x_2 over partial xi_{21}),这个在博客《直接法光度误差导数推导》中已经讲了如何求解。得到的结果是:

    [{partial x_2 over partial xi_{21}} = egin{bmatrix} f_x ho_2 & 0 & -f_x ho_2 u^{prime}_2 & -f_xu^{prime}_2 v^{prime}_2 & f_x(1 + u^{prime 2}_2) & -f_x v^{prime}_2 \ 0 & f_y ho_2 & -f_y ho_2 v^{prime}_2 & -f_y(1 + v^{prime 2}_2) & f_y u^{prime}_2 v^{prime}_2 & f_y u^{prime}_2 \ 0 & 0 & 0 & 0 & 0 & 0end{bmatrix} ]

    4. VecNRf JIdx[2];对应 (partial r_{21} over partial x_2)
    J->JIdx[0][idx] = hitColor[1];
    J->JIdx[1][idx] = hitColor[2];
    

    计算(partial r_{21} over partial x_2),这个在博客《直接法光度误差导数推导》中已经讲了如何求解。得到的结果是:

    [{partial r_{21} over partial x_{2}} = w_h {partial I_2[x_2] over partial x_{2}} = w_h egin{bmatrix} g_x, g_yend{bmatrix} ]

    注意代码中这个变量是8维。

    5. VecNRf JabF[2];({partial r_{21} over partial a_{21}}, {partial r_{21} over partial b_{21}})
    float drdA = (color[idx]-b0);
    ...
    J->JabF[0][idx] = drdA*hw;
    J->JabF[1][idx] = hw;
    

    计算({partial r_{21} over partial l_{21}}),这个在博客《直接法光度误差导数推导》中已经讲了如何求解。得到的结果是(结果有点不符合,需要再对照一下):

    [egin{align} {partial r_{21} over partial a_{21}} &= - w_h e^{a_{21}}I_1[x_1] otag \ {partial r_{21} over partial b_{21}} &= -w_h otag end{align}]

    10. JpJdF对应 (egin{bmatrix} {partial r_{21} over partial xi_{21}}^T{partial r_{21} over partial ho_1} \ {partial r_{21} over partial l_{21}}^T{partial r_{21} over partial ho_1}end{bmatrix})
    void EFResidual::takeDataF()
    {
    	std::swap<RawResidualJacobian*>(J, data->J);
    
    	Vec2f JI_JI_Jd = J->JIdx2 * J->Jpdd;
    
    	for(int i=0;i<6;i++)
    		JpJdF[i] = J->Jpdxi[0][i]*JI_JI_Jd[0] + J->Jpdxi[1][i] * JI_JI_Jd[1];
    
    	JpJdF.segment<2>(6) = J->JabJIdx*J->Jpdd;
    }
    
    1. JI_JI_Jd对应({partial r_{21} over partial x_2}^T{partial r_{21} over partial ho_1}),2x8 8x1,2x1。
    2. JpJdF.segment<6>(0)对应({partial x_2 over partial xi_{21}}^T{partial r_{21} over partial x_2}^T{partial r_{21} over partial ho_1} = {partial r_{21} over partial xi_{21}}^T{partial r_{21} over partial ho_1}),6x2 2x8 8x1,6x1。
    3. JpJdF.segment<2>(6)对应({partial r_{21} over partial l_{21}}^T{partial r_{21} over partial x_2}{partial x_2 over partial ho_1} = {partial r_{21} over partial l_{21}}^T{partial r_{21} over partial ho_1}),2x8 8x2 2x1,2x1。
    4. JpJdF对应(egin{bmatrix} {partial r_{21} over partial xi_{21}}^T{partial r_{21} over partial ho_1} \ {partial r_{21} over partial l_{21}}^T{partial r_{21} over partial ho_1}end{bmatrix}),8x1。
  • 相关阅读:
    hdu 4503(湫湫系列故事——植树节)
    JAVA里面如何让一个线程死亡或结束
    c 语言static
    TUXEDO与ORACLE数据库的互连
    关于使用PRO*C编程的一些简单说明和例子
    atoi函数
    我的顶级Java工具名单
    Tuxedo动态配置命令 tmconfig用法总结
    main(argc,argv) 中的参数
    pro c中varchar类型变量的arr函数是做什么用?
  • 原文地址:https://www.cnblogs.com/JingeTU/p/8395046.html
Copyright © 2011-2022 走看看