题意:
给定一个串(s),(s)必有一个最大循环节的连续子串(ss),问最大循环次数是多少
思路:
我们可以知道,如果一个长度为(L)的子串连续出现了两次及以上,那么必然会存在(s[0]、s[L]、s[2L] cdots s[L * k])中至少有两个连续的位置是相同的,然后看字母(s[L * i]和s[L * (i + 1)])往前往后最多能匹配多远,记住总长度(len),那么最大循环次数为((len / L) + 1)。
参考:
代码:
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 50000 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 11;
const int MOD = 1e9 + 7;
using namespace std;
//下标从0开始
int str[maxn]; //str[n]赋值一个最小值0,其他大于0
int t1[maxn], t2[maxn], c[maxn];
int sa[maxn]; //排名为i的后缀下标
int rk[maxn]; //后缀下标为i的排名
int height[maxn]; //sa[i]与sa[i - 1]的LCP
int mm[maxn];
int dp[maxn][30];
bool cmp(int *r, int a, int b, int l){
return r[a] == r[b] && r[a + l] == r[b + l];
}
void da(int *str, int n, int m){
n++;
int i, j, p, *x = t1, *y = t2;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[i] = str[i]]++;
for(i = 1; i < m; i++) c[i] += c[i - 1];
for(i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i;
for(j = 1; j <= n; j <<= 1){
p = 0;
for(i = n - j; i < n; i++) y[p++] = i;
for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i] - j;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[y[i]]]++;
for(i = 1; i < m; i++) c[i] += c[i - 1];
for(i = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = 1; x[sa[0]] = 0;
for(i = 1; i < n; i++)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], j)? p - 1 : p++;
if(p >= n) break;
m = p;
}
int k = 0;
n--;
for(i = 0; i <= n; i++) rk[sa[i]] = i;
for(i = 0; i < n; i++){
if(k) k--;
j = sa[rk[i] - 1];
while(str[i + k] == str[j + k]) k++;
height[rk[i]] = k;
}
}
void initRMQ(int n){
mm[0] = -1;
for(int i = 1; i <= n; i++){
dp[i][0] = height[i];
mm[i] = ((i & (i - 1)) == 0)? mm[i - 1] + 1 : mm[i - 1];
}
for(int j = 1; j <= mm[n]; j++)
for(int i = 1; i + (1 << j) - 1 <= n; i++)
dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
}
int RMQ(int L, int R){
int k = mm[R - L + 1];
return min(dp[L][k], dp[R - (1 << k) + 1][k]);
}
int LCP(int i, int j){ //求后缀i和j的LCP最长公共前缀
int L = rk[i], R = rk[j];
if(L > R) swap(L, R);
L++;
return RMQ(L, R);
}
int main(){
int T;
scanf("%d", &T);
while(T--){
int n;
scanf("%d", &n);
for(int i = 0; i < n; i++){
char ss[2];
scanf("%s", ss);
str[i] = ss[0] - 'a' + 1;
}
str[n] = 0;
da(str, n, 3);
initRMQ(n);
int ans = 1;
for(int i = 1; i < n; i++){
for(int j = 0; j + i < n; j += i){
int len = LCP(j, j + i);
int times = len / i + 1;
int pos = j - (i - len % i);
if(pos >= 0){
len = LCP(pos, pos + i);
times = max(times, len / i + 1);
}
ans = max(ans, times);
}
}
printf("%d
", ans);
}
return 0;
}