1. 背景
例子:创建个窗口卖票,总票数为100张.使用实现Runnable接口的方式
*
* 1.问题:卖票过程中,出现了重票、错票 -->出现了线程的安全问题
* 2.问题出现的原因:当某个线程操作车票的过程中,尚未操作完成时,其他线程参与进来,也操作车票。
* 3.如何解决:当一个线程a在操作ticket的时候,其他线程不能参与进来。直到线程a操作完ticket时,其他线程才可以开始操作ticket。这种情况即使线程a出现了阻塞,也不能被改变。
2. Java解决方案:同步机制
在Java中,我们通过同步机制,来解决线程的安全问题。
2.1 方式一:同步代码块
* synchronized(同步监视器){
* //需要被同步的代码
*
* }
* 说明:1.操作共享数据的代码,即为需要被同步的代码。 -->不能包含代码多了,也不能包含代码少了。
* 2.共享数据:多个线程共同操作的变量。比如:ticket就是共享数据。
* 3.同步监视器,俗称:锁。任何一个类的对象,都可以充当锁。
* 要求:多个线程必须要共用同一把锁。
*
* 补充:在实现Runnable接口创建多线程的方式中,我们可以考虑使用this充当同步监视器。
在继承Thread类创建多线程的方式中,慎用this充当同步监视器,考虑使用当前类充当同步监视器。
2.2 方式二:同步方法
* 如果操作共享数据的代码完整的声明在一个方法中,我们不妨将此方法声明同步的。
* 关于同步方法的总结:
* 1. 同步方法仍然涉及到同步监视器,只是不需要我们显式的声明。
* 2. 非静态的同步方法,同步监视器是:this
* 静态的同步方法,同步监视器是:当前类本身
2.3 方式三:Lock锁 --- JDK5.0新增
* 1. 面试题:synchronized 与 Lock的异同?
* 相同:二者都可以解决线程安全问题
* 不同:synchronized机制在执行完相应的同步代码以后,自动的释放同步监视器
* Lock需要手动的启动同步(lock(),同时结束同步也需要手动的实现(unlock())
2.4 使用的优先顺序
* Lock ---> 同步代码块(已经进入了方法体,分配了相应资源 ) ---> 同步方法(在方法体之外)
3.利弊
同步的方式,解决了线程的安全问题。---好处
操作同步代码时,只能一个线程参与,其他线程等待。相当于是一个单线程的过程,效率低。
4 面试题
Java是如何解决线程安全问题的,有几种方式?并对比几种方式的不同
synchronized和Lock方式解决线程安全问题的对比
5. 线程安全的单例模式(懒汉式)
线程安全的单例模式(懒汉式)
class Bank{
private Bank(){}
private static Bank instance = null;
public static Bank getInstance(){
//方式一:效率稍差
// synchronized (Bank.class) {
// if(instance == null){
//
// instance = new Bank();
// }
// return instance;
// }
//方式二:效率更高
if(instance == null){
synchronized (Bank.class) {
if(instance == null){
instance = new Bank();
}
}
}
return instance;
}
}
面试题:写一个线程安全的单例模式。
饿汉式。
懒汉式:上面提供的。
6. 死锁问题
6.1 死锁的理解
不同的线程分别占用对方需要的同步资源不放弃,
都在等待对方放弃自己需要的同步资源,就形成了线程的死锁
6.2 说明
* 1出现死锁后,不会出现异常,不会出现提示,只是所的线程都处于阻塞状态,
无法继续
* 2我们使用同步时,要避免出现死锁。
6.3 举例
前一个线程A执行先拿住s1(mutex)后,锁住s1,若后一个线程B执行先拿住s2,并锁住
s2,此时A想要s2资源,B想要s1资源,两线程“互不想让”、互相等待对方先释放资源,于是形成了死锁!
public static void main(String[] args) {
StringBuffer s1 = new StringBuffer();
StringBuffer s2 = new StringBuffer();
new Thread(){
@Override
public void run() {
synchronized (s1){
s1.append("a");
s2.append("1");
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (s2){
s1.append("b");
s2.append("2");
System.out.println(s1);
System.out.println(s2);
}
}
}
}.start();
new Thread(new Runnable() {
@Override
public void run() {
synchronized (s2){
s1.append("c");
s2.append("3");
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (s1){
s1.append("d");
s2.append("4");
System.out.println(s1);
System.out.println(s2);
}
}
}
}).start();
}