zoukankan      html  css  js  c++  java
  • 一种最坏情况线性运行时间的选择算法

    一种最坏情况线性运行时间的选择算法 - The missing worst-case linear-time Select algorithm in CLRS.

    选择算法也就是求一个无序数组中第K大(小)的元素的值的算法,同通常的Top K等算法密切相关。

    在CLRS中提到了一种最坏情况线性运行时间的选择算法,在书中给出了如下的文字描述(没有直接给出伪代码)。

    复制代码
    1.Divide n elements into groups of 5
    2.Find median of each group (How?  How long?)
    3.Use Select() recursively to find median x of the n/5 medians
    4.Partition the n elements around x.  Let k = rank(x)
    5.if (i == k) then return x
      if (i < k) then use Select() recursively to find ith smallest element in first partition
    else (i > k) use Select() recursively to find (i-k)th smallest element in last partition
    复制代码

    后来在MIT公开课网站上找到了这个课件。给出了几段伪代码,但是比上面的文字描述强不了多少;

    得了还是自己动手丰衣足食吧;

    代码中给出了同STL标准Select算法、一般SELECT和随机化的SELECT算法的运行效率比较分析;

    现以C++实现了该选择算法,以供参考。

    复制代码
    //determines the ith smallest element of an input array.
    #include <iostream>
    #include <algorithm>
    #include <ctime>
    #include <cassert>
    
    using namespace std;
    
    #include "randomized_select.cpp"
    
    size_t my_ceil(size_t m, size_t n)
    {
        size_t mul, rem;
        mul = m / n;
        rem = m % n;
        if (rem > 0)
            mul++;
        return mul;
    }
    
    size_t my_floor(size_t m, size_t n)
    {
        return m / n;
    }
    
    template <class T>
    void exchange(T& x, T& y)
    {
        T t = x; x = y; y = t;
    }
    
    template <class T>
    void insertion_sort(T *a, size_t n)
    {
        int i, j;
        for (j = 1; j < (int) n; ++j) {
            T key = a[j];
            // insert a[j] into the sorted sequence a[0..j-1].
            i = j - 1;
            while (i >= 0 && a[i] > key) { //>= or >
                a[i + 1] = a[i];
                i--;
            }
            a[i + 1] = key;
        }
    }
    
    template <class T>
    size_t partition(T *a, size_t p, size_t r)
    {
        T x = a[r];
        int i = p - 1, j; //XXX in case of negative.
        for (j = p; j < (int) r; ++j)
        if (a[j] <= x) //XXX <= or <
            exchange(a[++i], a[j]);
        exchange(a[i + 1], a[r]);
        return i + 1;
    }
    
    // find index of element x in array a of size n.
    template <class T>
    size_t index_of(T *a, size_t n, T x)
    {
        size_t i;
        for (i = 0; i < n; ++i)
        if (a[i] == x)
            return i;
        return i;
    }
    
    // partition around pivot on index i
    template <class T>
    size_t partition_x(T *a, size_t n, T x)
    {
        if (n == 1) //XXX zero based index.
            return 0;
        size_t p, r, i; // [p, r]
        p = 0;
        r = n - 1;
        i = index_of(a, n, x);
        if (i >= n)
            cout << "i=" << i << "; n=" << n << endl;
        assert(i < n); //XXX not found!
        exchange(a[i], a[r]);
        return partition(a, p, r);
    }
    
    #ifndef NDEBUG
    #define NDEBUG
    #endif
    
    // select from [p,r]
    template <class T>
    T select(T *a, size_t n, size_t i)
    {
        if (n < 2) // 0,1
            return a[0]; //XXX
    
        // 1: divide n elements into groups of 5.
        size_t ng = my_floor(n, 5); // ng group with 5 elements.
        size_t ng1 = my_ceil(n, 5); // ng1 >= ng.
        size_t rem = n - ng * 5; // elements in last group.
    
    #ifndef NDEBUG
        cout << "i=" << i << "; n=" << n << "; ng=" << ng << "; ng1=" << ng1 << endl;
    #endif
    
        // 2: find median of each group.
        // sort each group.
        for (size_t j = 0; j < ng; ++j)
            insertion_sort(&a[5 * j], 5);
        //   sort last group(or only group).
        if (rem > 0)
            insertion_sort(&a[5 * ng], rem);
    
        // picking medians
        T *medians = new T[ng1];
        for (size_t j = 0; j < ng; ++j)
            medians[j] = a[5 * j + 2];
        //   picking the last median.
        if (rem > 0) {
            size_t last_mi = ng * 5 - 1 + my_ceil(rem, 2); // (start+end)/2 floor.
            medians[ng] = a[last_mi];
        }
    
        // 3: use select recursively to find median x of the medians.
        // partition on median-of-medians.
        size_t mmi = my_ceil(n, 10) - 1;
        T x = select(medians, ng1, mmi);
        delete [] medians; //XXX break;
    
    #ifndef NDEBUG
        cout << "(before partition); x=" << x.value << ";" << endl;
        for (size_t y = 0; y < 5; y++) {
            for (size_t x = 0; x < ng; x++)
            if (gp[x].e[y].is_infinite)
                cout << "*" << "	";
            else
                cout << gp[x].e[y].value << "	";
            cout << endl;
        }
    #endif
    
        // 4: partition input array around pivot x.
        size_t k = partition_x(a, n, x);
    
    #ifndef NDEBUG
        cout << "(after partition); k=" << k << endl;
        for (size_t y = 0; y < 5; y++) {
            for (size_t x = 0; x < ng; x++)
            if (gp[x].e[y].is_infinite)
                cout << "*" << "	";
            else
                cout << gp[x].e[y].value << "	";
            cout << endl;
        }
        cout << endl;
    #endif
    
        if (i == k) // DONE!
            return a[k]; // value of pivot.
        else if (i < k) // L array.
            return select(a, k, i);
        else // if (i > k) // G array,
            return select(a + k + 1, n - k - 1, i - k - 1);
    }
    
    // ith from 0.
    template <class T>
    T try_select(T *a, size_t n, size_t ith)
    {
        clock_t beg = clock();
    
        T x = select(a, n, ith); // [0,n-1]
    
        clock_t end = clock();
        cout << "Select take " << (double) (end - beg) / CLOCKS_PER_SEC << " sec." << endl;
    
        return x;
    }
    
    // ith start from 0.
    int try_std_select(int *a, size_t n, size_t ith)
    {
        clock_t beg = clock();
        nth_element(a, a + ith + 1, a + n);
        clock_t end = clock();
        cout << "STD take " << (double) (end - beg) / CLOCKS_PER_SEC << " sec." << endl;
        return a[ith];
    }
    
    // ith start from 1.
    int try_rand_select(int *a, size_t n, size_t ith)
    {
        clock_t beg = clock();
        int ie = randsel::randomized_select(a, 0, n - 1, ith + 1);
        clock_t end = clock();
        cout << "random select take " << (double) (end - beg) / CLOCKS_PER_SEC << " sec." << endl;
        return ie;
    }
    
    void select_test()
    {
        cout << "please choose the select algorithm: " << endl
            << "1: my select(default); 2: std nth_element; 3: random select;" << endl;
        int choice;
        cin >> choice;
    
    #define _1K (1024)
    #define _1M (_1K*_1K)
    #define _1G (_1K*_1M)
    #define _256M (256*_1M) //2^26
    
        // 1k, 1m, 256m
        for (size_t n = _1K; n <= _256M; ) {
    
            int *a = new int[n];
    
            for (size_t j = 0; j < n; ++j)
                a[j] = j * 10;
            random_shuffle(a, a + n);
            int ith = n / 2;
    
            cout << endl << "=============== n=" << n << ", i=" << ith << " ==============" << endl;
            int ie;
    
            switch (choice)
            {
            case 1:
                ie = try_select(a, n, ith); // zero based index.
                break;
            case 2:
                ie = try_std_select(a, n, ith);
                break;
            case 3:
                ie = try_rand_select(a, n, ith);
                break;
            default:
                ie = try_select(a, n, ith); // zero based index.
                break;
            }
    
            cout << ith << "-th:" << ie << endl;
            assert(ie == ith * 10);
    
            delete [] a;
    
            // level.
            if (n == _1K)
                n = _1M;
            else if (n == _1M)
                n = _256M;
            else if (n == _256M)
                n = _1G;
            else
                n = _1G;
        }
    }
    复制代码
     
     
     
    标签: 算法
  • 相关阅读:
    Android Studio打开非本机项目比较慢的问题。
    Servlet实现重定向的两种方式
    Servlet实现定时刷新到另外一个页面response.setHeader("refresh", "3;url=/...")
    Servlet实现自动刷新功能
    自己实现一个验证码功能
    使用Servlet实现图片下载
    数据库备份的几种方法
    servlet实现的三种方式对比(servlet 和GenericServlet和HttpServlet)
    java中this的用法如:this.name=name
    步骤一:下载jdk并安装和配置java环境变量
  • 原文地址:https://www.cnblogs.com/Leo_wl/p/3384973.html
Copyright © 2011-2022 走看看