zoukankan      html  css  js  c++  java
  • 13-垃圾邮件分类2

     

    1.读取

    2.数据预处理

    3.数据划分—训练集和测试集数据划分

    from sklearn.model_selection import train_test_split

    x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

    4.文本特征提取

    sklearn.feature_extraction.text.CountVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

    sklearn.feature_extraction.text.TfidfVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

    from sklearn.feature_extraction.text import TfidfVectorizer

    tfidf2 = TfidfVectorizer()

    观察邮件与向量的关系

    向量还原为邮件

    4.模型选择

    from sklearn.naive_bayes import GaussianNB

    from sklearn.naive_bayes import MultinomialNB

    说明为什么选择这个模型?

    5.模型评价:混淆矩阵,分类报告

    from sklearn.metrics import confusion_matrix

    confusion_matrix = confusion_matrix(y_test, y_predict)

    说明混淆矩阵的含义

    from sklearn.metrics import classification_report

    说明准确率、精确率、召回率、F值分别代表的意义 

    混淆矩阵:

    True Positive(真正,TP):将正类预测为正类数
    True Negative(真负,TN):将负类预测为负类数
    False Positive(假正,FP):将负类预测为正类数误报 (Type I error)
    False Negative(假负,FN):将正类预测为负类数→漏报 (Type II error)

    意义:

    准确率:被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好。(TP+TN)/总

    精确率:表示被分为正例的示例中实际为正例的比例。 TP/(TP+FP)

    召回率 :召回率是覆盖面的度量,度量有多个正例被分为正例。TP/(TP+FN)

    F值 : 精确率 * 召回率 * 2 / ( 精确率 + 召回率) 。F值就是准确率(P)和召回率(R)的加权调和平均。

     

    6.比较与总结

    如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

    CountVectorizer:只考虑词汇在文本中出现的频率,属于词袋模型特征。

    TfidfVectorizer: 除了考滤某词汇在文本出现的频率,还关注包含这个词汇的所有文本的数量。能够削减高频没有意义的词汇出现带来的影响, 挖掘更有意义的特征。属于Tfidf特征。

    相比之下,文本条目越多,Tfid的效果会越显著。

  • 相关阅读:
    X
    W
    J
    A
    Q
    P
    B
    排列和组合的求解
    深度学习之序列处理
    32位和64位数据类型大小对比
  • 原文地址:https://www.cnblogs.com/LipengC/p/12960265.html
Copyright © 2011-2022 走看看