zoukankan      html  css  js  c++  java
  • 【数值分析】Python实现Lagrange插值

    一直想把这几个插值公式用代码实现一下,今天闲着没事,尝试尝试。

    先从最简单的拉格朗日插值开始!关于拉格朗日插值公式的基础知识就不赘述,百度上一搜一大堆。

    基本思路是首先从文件读入给出的样本点,根据输入的插值次数和想要预测的点的x选择合适的样本点区间,最后计算基函数得到结果。直接看代码!(注:这里说样本点不是很准确,实在词穷找不到一个更好的描述。。。)

    str2double

    一个小问题就是怎样将python中的str类型转换成float类型,毕竟我们给出的样本点不一定总是整数,而且也需要做一些容错处理,比如多个+、多个-等等,也应该能识别为正确的数。所以实现了一个str2double方法。

    【20200903更新】如果不用考虑多个前置正号或者负号的情况,直接用float()就可以,我居然今天才知道QAQ。

    import re
    def str2double(str_num):
        pattern = re.compile(r'^((+*)|(-*))?(d+)(.(d+))?$')
        m = pattern.match(str_num)
        if m is None:
            return m
        else:
            sign = 1 if str_num[0] == '+' or '0' <= str_num[0] <= '9' else -1
            num = re.sub(r'(++)|(-+)', "", m.group(0))
            matchObj = re.match(r'^d+$', num)
            if matchObj is not None:
                num = sign * int(matchObj.group(0))
            else:
                matchObj = re.match(r'^(d+).(d+)$', num)
                if matchObj is not None:
                    integer = int(matchObj.group(1))
                    fraction = int(matchObj.group(2)) * pow(10, -1*(len(matchObj.group(2))))
                    num = sign * (integer + fraction)
            return num
    

    我使用了正则表达式来实现,pattern = re.compile(r'^((+*)|(-*))?(d+)(.(d+))?$')可以匹配我上面提到的所有类型的整数和浮点数,之后进行匹配,匹配成功,如果是整数,直接return整数部分,这个用(int)强制转换即可;如果是浮点数,那么用(d+)这个正则表达式再次匹配,分别得到整数部分和小数部分,整数部分的处理和上面类似,小数部分则用乘以pow(10, -小数位数)得到,之后直接相加即可。这里为了支持多个+或者-,使用re.sub方法将符号去掉,所以就需要用sign来记录数字的正负,在最后return时乘上sign即可。

    def binary_search(point_set, n, x):
        first = 0
        length = len(point_set)
        last = length
        while first < last:
            mid = (first + last) // 2
            if point_set[mid][0] < x:
                first = mid + 1
            elif point_set[mid][0] == x:
                return mid
            else:
                last = mid
        last =  last if last != length else last-1
    
        head = last - 1
        tail = last
        while n > 0:
            if head != -1:
                n -= 1
                head -= 1
            if tail != length:
                n -= 1
                tail += 1
        return [head+1, tail-1] if n == 0 else [head+1, tail-2]
    

    这里point_set是全部样本点的集合,n是输入的插值次数,x是输入的预测点。返回合适的插值区间,即尽可能地把x包在里面。

    因为要根据输入得到合适的插值区间,所以就涉及查找方面的知识。这里使用了二分查找,先对样本点集合point_set进行排序(升序),找到第一个大于需要预测点的样本点,在它的两侧扩展区间,直到满足插值次数要求。这里我的实现有些问题,可能会出现n=-1因为tail多加了一次,就在while循环外又进行了一次判断,n=-1tail-2,这个实现的确不好,可能还会有bug。。。

    最后,剩下的内容比较好理解,直接放上全部代码。

    import re
    import matplotlib.pyplot as plt
    import numpy as np
    
    def str2double(str_num):
        pattern = re.compile(r'^((+*)|(-*))?(d+)(.(d+))?$')
        m = pattern.match(str_num)
        if m is None:
            return m
        else:
            sign = 1 if str_num[0] == '+' or '0' <= str_num[0] <= '9' else -1
            num = re.sub(r'(++)|(-+)', "", m.group(0))
            matchObj = re.match(r'^d+$', num)
            if matchObj is not None:
                num = sign * int(matchObj.group(0))
            else:
                matchObj = re.match(r'^(d+).(d+)$', num)
                if matchObj is not None:
                    integer = int(matchObj.group(1))
                    fraction = int(matchObj.group(2)) * pow(10, -1*(len(matchObj.group(2))))
                    num = sign * (integer + fraction)
            return num
    
    def preprocess():
        f = open("input.txt", "r")
        lines = f.readlines()
        lines = [line.strip('
    ') for line in lines]
        point_set = list()
        for line in lines:
            point = list(filter(None, line.split(" ")))
            point = [str2double(pos) for pos in point]
            point_set.append(point)
        return point_set
    
    def lagrangeFit(point_set, x):
        res = 0
        for i in range(len(point_set)):
            L = 1
            for j in range(len(point_set)):
                if i == j:
                    continue
                else:
                    L = L * (x - point_set[j][0]) / (point_set[i][0] - point_set[j][0])
            L = L * point_set[i][1]
            res += L
        return res
    
    def showbasis(point_set):
        print("Lagrange Basis Function:
    ")
        for i in range(len(point_set)):
            top = ""
            buttom = ""
            for j in range(len(point_set)):
                if i == j:
                    continue
                else:
                    top += "(x-{})".format(point_set[j][0])
                    buttom += "({}-{})".format(point_set[i][0], point_set[j][0])
            print("Basis function{}:".format(i))
            print("		{}".format(top))
            print("		{}".format(buttom))
    
    def binary_search(point_set, n, x):
        first = 0
        length = len(point_set)
        last = length
        while first < last:
            mid = (first + last) // 2
            if point_set[mid][0] < x:
                first = mid + 1
            elif point_set[mid][0] == x:
                return mid
            else:
                last = mid
        last =  last if last != length else last-1
    
        head = last - 1
        tail = last
        while n > 0:
            if head != -1:
                n -= 1
                head -= 1
            if tail != length:
                n -= 1
                tail += 1
        return [head+1, tail-1] if n == 0 else [head+1, tail-2]
    
    if __name__ == '__main__':
        pred_x = input("Predict x:")
        pred_x = float(pred_x)
        n = input("Interpolation times:")
        n = int(n)
        point_set = preprocess()
        point_set = sorted(point_set, key=lambda a: a[0])
        span = binary_search(point_set, n+1, pred_x)
        print("Chosen points: {}".format(point_set[span[0]:span[1]+1]))
        showbasis(point_set[span[0]:span[1]+1])
    
        X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
        S = np.sin(X)
        L = [lagrangeFit(point_set, x) for x in X]
        L1 = [lagrangeFit(point_set[span[0]:span[1]+1], x) for x in X]
        
        plt.figure(figsize=(8, 4))
        plt.plot(X, S, label="$sin(x)$", color="red", linewidth=2)
        plt.plot(X, L, label="$LagrangeFit-all$", color="blue", linewidth=2)
        plt.plot(X, L1, label="$LagrangeFit-special$", color="green", linewidth=2)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.title("$sin(x)$ and Lagrange Fit")
        plt.legend()
        plt.show()
    

    About Input

    使用了input.txt进行样本点读入,每一行一个点,中间有一个空格。

    结果

    感觉挺好玩的hhh,过几天试试牛顿插值!掰掰!

  • 相关阅读:
    PL/SQL developer连接oracle出现“ORA-12154:TNS:could not resolve the connect identifier specified”问题的解决
    POJ 1094-Sorting It All Out(拓扑排序)
    Windows剪贴板操作简单小例
    我的高效编程的秘诀--开发环境的重要性(IOS)
    js操作cookie的一些注意项
    解决 libev.so.4()(64bit) is needed by percona-xtrabackup-2.3.4-1.el6.x86_64案例
    my.cnf 详解
    keepalived的log
    keepalive配置mysql自动故障转移
    说说能量守恒定律
  • 原文地址:https://www.cnblogs.com/LuoboLiam/p/11706151.html
Copyright © 2011-2022 走看看