1.使用朴素贝叶斯模型对iris数据集进行花分类
#高斯分布型
from sklearn.datasets import load_iris iris = load_iris() from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() #建立高斯分布模型 pred = gnb.fit(iris.data,iris.target) #模型训练 y_pred = pred.predict(iris.data) #分类预测 print(iris.data.shape[0],(iris.target != y_pred).sum())
运行结果:
#多项式型
from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import MultinomialNB gnb = MultinomialNB() #构造多项式分布模型 pred = gnb.fit(iris.data,iris.target) #模型训练 y_pred = pred.predict(iris.data) #分类预测 print(iris.data.shape[0],(iris.target != y_pred).sum())
运行结果:
#伯努利型
from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import BernoulliNB gnb = BernoulliNB() #构造伯努利模型 pred = gnb.fit(iris.data,iris.target) #模型训练 y_pred = pred.predict(iris.data) #分类预测 print(iris.data.shape[0],(iris.target != y_pred).sum())
运行结果:
2.使用sklearn.model_selection.cross_val_score(),对模型进行验证。
#高斯模型验证
from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import cross_val_score gnb = GaussianNB() scores = cross_val_score(gnb,iris.data,iris.target,cv=10) #对高斯模型进行验证 print("Accuracy:%.3f"%scores.mean())
运行结果:
#多项式模型验证
from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import cross_val_score gnb = MultinomialNB () scores = cross_val_score(gnb,iris.data,iris.target,cv=10) #对多项式分布模型进行验证 print("Accuracy:%.3f"%scores.mean())
运行结果:
#伯努利模型验证
from sklearn.naive_bayes import BernoulliNB from sklearn.model_selection import cross_val_score gnb = BernoulliNB() scores = cross_val_score(gnb,iris.data,iris.target,cv=10) #对伯努利模型进行验证 print("Accuracy:%.3f"%scores.mean())
运行结果:
3. 垃圾邮件分类
数据准备:
- 用csv读取邮件数据,分解出邮件类别及邮件内容。
- 对邮件内容进行预处理:去掉长度小于3的词,去掉没有语义的词等
尝试使用nltk库:
pip install nltk
import nltk
nltk.download
不成功:就使用词频统计的处理方法
(由于下载nltk库不成功5次,现将源代码先保存为一份,故没有运行截图)
代码1
import nltk nltk.download() text = '''ham "Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat..."''' import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer def preprocessing(text): #text=text.decode("utf-8") tokens=[word for sent in nltk.sent_tokenize(text) for word in nltk.word in nltk.word_tokenize(sent)] stops=stopwords.words('english') tokens=[token for token in tokens if token not in stops] tokens=[token.lower() for token in tokens if len(token)>=3] lmtzr= WordNetLemmatizer() tokens=[lmtzr.lemmatizer(token) for token in tokens] preprocessed_text=' '.join(tokens) return preprocessed_text preprocessing(text)
代码2
import csv file_path=r'F:Pycharm11.22SMSSpamCollectionjsn.txt' sms=open(file_path,'r',encoding='utf-8') sms_data=[] sms_label=[] csv_reader=csv.reader(sms,delimiter=' ') for line in csv_reader: sms_label.append(line[0]) sms_data.append(line[1]) sms.close() print(len(sms_label)) sms_label
代码3
def preprocessing(text): preprocessing_text = text return preprocessed_text import csv file_path=r'F:Pycharm11.22SMSSpamCollection' sms=open(file_path,'r',encoding='utf-8') sms_data=[] sms_label=[] csv_reader=csv.reader(sms,delimiter=' ') for line in csv_reader: sms_label.append(line[0]) sms_data.append(preprocessing(line[1])) sms.close() sms_data
代码4
from sklearn.model_selection import train_test_split x_train, x_text, y_train, y_test = train_test_split(sms_data, sms_label, test_size=0.3, random_state=0, stratify=sms_label) x_train x_test from sklearn.naive_bayes import MultinomialNB clf=MultinomialNB().fit(x_train,y_train)
代码5
x_train
代码6
x_test