zoukankan      html  css  js  c++  java
  • sklearn中的朴素贝叶斯模型及其应用

    1.使用朴素贝叶斯模型对iris数据集进行花分类

    #高斯分布型

    from sklearn.datasets import load_iris
    iris = load_iris()
    from sklearn.naive_bayes import GaussianNB
    gnb = GaussianNB()  #建立高斯分布模型
    pred = gnb.fit(iris.data,iris.target)  #模型训练
    y_pred = pred.predict(iris.data)   #分类预测
    print(iris.data.shape[0],(iris.target != y_pred).sum())
    

    运行结果:

    #多项式型

    from sklearn import datasets
    iris = datasets.load_iris()
    from sklearn.naive_bayes import MultinomialNB  
    gnb = MultinomialNB()   #构造多项式分布模型
    pred = gnb.fit(iris.data,iris.target)  #模型训练
    y_pred = pred.predict(iris.data)   #分类预测
    print(iris.data.shape[0],(iris.target != y_pred).sum())
    

    运行结果:

    #伯努利型

    from sklearn import datasets
    iris = datasets.load_iris()
    from sklearn.naive_bayes import BernoulliNB  
    gnb = BernoulliNB()   #构造伯努利模型
    pred = gnb.fit(iris.data,iris.target)  #模型训练
    y_pred = pred.predict(iris.data)   #分类预测
    print(iris.data.shape[0],(iris.target != y_pred).sum())
    

    运行结果:

    2.使用sklearn.model_selection.cross_val_score(),对模型进行验证。

    #高斯模型验证

    from sklearn.naive_bayes import GaussianNB
    from sklearn.model_selection  import cross_val_score
    gnb = GaussianNB()
    scores = cross_val_score(gnb,iris.data,iris.target,cv=10)  #对高斯模型进行验证
    print("Accuracy:%.3f"%scores.mean())
    

    运行结果:

    #多项式模型验证

    from sklearn.naive_bayes import MultinomialNB 
    from sklearn.model_selection  import cross_val_score
    gnb = MultinomialNB ()
    scores = cross_val_score(gnb,iris.data,iris.target,cv=10)  #对多项式分布模型进行验证
    print("Accuracy:%.3f"%scores.mean())
    

    运行结果:

    #伯努利模型验证

    from sklearn.naive_bayes import BernoulliNB
    from sklearn.model_selection  import cross_val_score
    gnb = BernoulliNB()
    scores = cross_val_score(gnb,iris.data,iris.target,cv=10)  #对伯努利模型进行验证
    print("Accuracy:%.3f"%scores.mean())
    

    运行结果:

    3. 垃圾邮件分类

    数据准备:

    • 用csv读取邮件数据,分解出邮件类别及邮件内容。
    • 对邮件内容进行预处理:去掉长度小于3的词,去掉没有语义的词等

    尝试使用nltk库:

    pip install nltk

    import nltk

    nltk.download

    不成功:就使用词频统计的处理方法

    (由于下载nltk库不成功5次,现将源代码先保存为一份,故没有运行截图)

    代码1

    import nltk
    nltk.download()
    
    text = '''ham	"Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat..."'''
    import nltk
    from nltk.corpus import stopwords
    from nltk.stem import WordNetLemmatizer
    def preprocessing(text):
        #text=text.decode("utf-8")
        tokens=[word for sent in nltk.sent_tokenize(text) for word in nltk.word in nltk.word_tokenize(sent)]
        stops=stopwords.words('english')
        tokens=[token for token in tokens if token not in stops]
        tokens=[token.lower() for token in tokens if len(token)>=3]
        lmtzr= WordNetLemmatizer()
        tokens=[lmtzr.lemmatizer(token) for token in tokens]
        preprocessed_text=' '.join(tokens)
        return preprocessed_text
    
    preprocessing(text)
    

      

     代码2

    import csv
    file_path=r'F:Pycharm11.22SMSSpamCollectionjsn.txt'
    sms=open(file_path,'r',encoding='utf-8')
    sms_data=[]
    sms_label=[]
    csv_reader=csv.reader(sms,delimiter='	')
    for line in csv_reader:
        sms_label.append(line[0])
        sms_data.append(line[1])
    sms.close()
    print(len(sms_label))
    sms_label
    

      

    代码3

    def preprocessing(text):
        preprocessing_text = text
        return preprocessed_text
    
    import csv
    file_path=r'F:Pycharm11.22SMSSpamCollection'
    sms=open(file_path,'r',encoding='utf-8')
    sms_data=[]
    sms_label=[]
    csv_reader=csv.reader(sms,delimiter='	')
    for line in csv_reader:
        sms_label.append(line[0])
        sms_data.append(preprocessing(line[1]))
    sms.close()
    sms_data
    

      

    代码4

    from sklearn.model_selection import train_test_split
    x_train, x_text, y_train, y_test = train_test_split(sms_data, sms_label, test_size=0.3, random_state=0, stratify=sms_label)
    
    x_train
    x_test
    
    from sklearn.naive_bayes import MultinomialNB
    clf=MultinomialNB().fit(x_train,y_train)
    

      

    代码5

    x_train
    

      

    代码6

    x_test
    

      

  • 相关阅读:
    js 文件的操作
    js重点基础知识 以及小案例_最简单的轮播图 简单的动态表格( encodeURIComponent()编码比 encodeURI()编码)
    2阶——数据库连接池 c3p0 , druid, dbcp (其实所有的连接池都实现了dataSource接口,就可以调用getconnection方法)
    2阶——JDBC,JDBCTemplate(操作数据库)
    vue + django 批量删除
    简单的模糊搜索 Vue + django
    vue 父子组件传参简单的分页
    vue 多对多反序列化上传图片
    模型里的 抽象类 表继承
    django 多对多反序列添加
  • 原文地址:https://www.cnblogs.com/MIS-67/p/9999687.html
Copyright © 2011-2022 走看看