http://poj.org/problem?id=2154 (题目链接)
题意
n个珠子的项链,可以染上n中颜色,项链可以旋转不能翻转,求染色方案数。
Solution
经典的公式:
egin{aligned} ans &= sum_{i=0}^{n-1} gcd(n,i)\ &= sum_{d|n} (n^{d-1}*φ(frac{n}{d})) end{aligned}
于是就可以求了,然而时限卡太死,只能用int,还必须枚举质数求phi。。
代码
// poj2154
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 1<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std;
bool vis[1000010];
int p[100010],P;
int phi(int x) {
int t=x;
for (int i=1;p[i]<=sqrt(x);i++) if (x%p[i]==0) {
t=t-t/p[i];
while (x%p[i]==0) x/=p[i];
}
if (x>1) t=t-t/x;
return t%P;
}
int power(int a,int b) {
int res=1;
while (b) {
if (b&1) res=res*a%P;
b>>=1;a=a*a%P;
}
return res;
}
int main() {
for (int i=2;i<=1000000;i++) {
if (!vis[i]) p[++p[0]]=i;
for (int j=1;j<=p[0] && p[j]*i<=1000000;j++) {
vis[p[j]*i]=1;
if (i%p[j]==0) break;
}
}
int n,ans;
int T;scanf("%d",&T);
while (T--) {
scanf("%d%d",&n,&P);ans=0;
for (int i=1;i*i<=n;i++) if (n%i==0) {
ans+=power(n%P,i-1)*phi(n/i);
if (i*i!=n) ans+=power(n%P,n/i-1)*phi(i);
ans%=P;
}
printf("%d
",ans);
}
return 0;
}