题目大意:将作物种在A,B两地,对于每种作物,种A,B分别有不同的收益,对于一些特殊的作物集合,共同种到A,B集合分别有一些额外收益。求最大收益。
题解:最小割,S向i连容量为$a_i$的边,i向T连容量为$b_i$,对于每个集合,建两个大点,把每组内的点与其连接,容量为inf,两个大点分别与原点或汇点相连,容量为$c_{i1}$和$c_{i2}$
卡点:1.把inf的边设成了双向边
C++ Code:
#include <cstdio> #include <cstring> #define N 4010 #define M 2003010 using namespace std; const int inf = 0x3f3f3f3f; int st, ed , sum; int d[N], q[N], h, t; int n, m, k, o, c1, c2; int cnt = 2, head[N]; struct Edge { int to, nxt, w; }e[M << 1]; inline int min(int a, int b) {return a < b ? a : b;} void addE(int a, int b, int c){ e[cnt] = (Edge) {b, head[a], c}; head[a] = cnt; e[cnt ^ 1] = (Edge) {a, head[b], 0}; head[b] = cnt ^ 1; cnt += 2; } void addE_(int a, int b, int c){ e[cnt] = (Edge) {b, head[a], c}; head[a] = cnt; e[cnt ^ 1] = (Edge) {a, head[b], c}; head[b] = cnt ^ 1; cnt += 2; } bool bfs() { memset(d, 0, sizeof d); d[q[h = t = 0] = st] = 1; while (h <= t) { int u = q[h++]; if (u == ed) return true; for (int i = head[u]; i; i = e[i].nxt) { int v = e[i].to; if ((!d[v]) && (e[i].w)){ d[v] = d[u] + 1; q[++t] = v; } } } return d[ed]; } int dfs(int u, int low) { if ((u == ed) || (low <= 0)) return low; int res = 0; for (int i = head[u]; i; i = e[i].nxt) { int v = e[i].to; if ((d[v] == d[u] + 1) && (e[i].w)){ int w = dfs(v, min(e[i].w, low - res)); e[i].w -= w; e[i ^ 1].w += w; res += w; if (res == low) return res; } } if (!res) d[u] = -1; return res; } void dinic() { int ans = 0; while (bfs()) { ans += dfs(st, inf); // printf("%d ", ans); } printf("%d ", sum - ans); } int main() { scanf("%d", &n); st = 0; ed = 4009; for (int i = 1; i <= n; i++) {scanf("%d", &o); addE(st, i, o); sum += o;} for (int i = 1; i <= n; i++) {scanf("%d", &o); addE(i, ed, o); sum += o;} scanf("%d", &m); for (int l = 1; l <= m; l++) { scanf("%d%d%d", &k, &c1, &c2); sum += c1 + c2; addE(st, l + n, c1); addE(l + n + m, ed, c2); for (int i = 1; i <= k; i++) {scanf("%d", &o); addE(l + n, o, inf); addE(o, l + n + m, inf);} } dinic(); return 0; }