zoukankan      html  css  js  c++  java
  • sklearn交叉验证法(Cross Validation)

    import numpy as np
    from sklearn import datasets
    from sklearn.cross_validation import train_test_split
    from sklearn.neighbors import  KNeighborsClassifier
    from sklearn.cross_validation import cross_val_score
    iris = datasets.load_iris()
    iris_X = iris.data
    iris_Y = iris.target
    
    knn = KNeighborsClassifier()
    scores = cross_val_score(knn,iris_X,iris_Y,cv=5,scoring="accuracy")
    print(scores.mean())

    import numpy as np
    from sklearn import datasets
    from sklearn.cross_validation import train_test_split
    from sklearn.neighbors import  KNeighborsClassifier
    from sklearn.cross_validation import cross_val_score
    import  matplotlib.pyplot as plt
    
    iris = datasets.load_iris()
    iris_X = iris.data
    iris_Y = iris.target
    
    k_range = range(1,31)
    k_score = []
    
    for k in k_range:
        knn = KNeighborsClassifier(n_neighbors=k)
        # cv:分成五组
        scores = cross_val_score(knn, iris_X, iris_Y, cv=10, scoring="accuracy")
        k_score.append(scores.mean())
    
    plt.plot(k_range, k_score)
    plt.xlabel('Value of K for KNN')
    plt.ylabel('Cross-Validated MSE')
    plt.show()

    一般来说准确率(accuracy)会用于判断分类(Classification)模型的好坏。

     scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy')

    一般来说平均方差(Mean squared error)会用于判断回归(Regression)模型的好坏。

      loss = -cross_val_score(knn, X, y, cv=10, scoring='mean_squared_error')
  • 相关阅读:
    Word中封面的问题
    UML问题
    《十八岁的天空》有感
    SPSS相关和回归分析
    WinForm自定义验证控件
    .NET常用的扩展方法整理
    C# 对JS编码/解码进行转换
    Jquery AJAX 调用WebService服务
    多条件动态LINQ 组合查询
    Visual studio 2008 的语法高亮插件 WordLight
  • 原文地址:https://www.cnblogs.com/Michael2397/p/7995170.html
Copyright © 2011-2022 走看看