zoukankan      html  css  js  c++  java
  • 科学计算库Numpy基础操作

    pycharm,python3.7,numpy版本1.15.1

    2018年9月11日04:23:06

    """
        科学计算库Numpy基础操作
        时间:2018911 0011
    """
    import numpy
    
    print("""
    ------以矩阵的方式读取数据------
    
    ------------genfromtxt函数('文件路径',delimiter = '分隔符',dtype = 读取方式)---------------------""")
    """
        numpy.ndarray可以当做一个矩阵
    """
    np_test = numpy.genfromtxt('Numpy_test.txt', delimiter = ',', dtype = str)  # 通常以str方式读取,如果有float,再进行转换
    print(type(np_test))
    print(np_test)
    # print(help(numpy.genfromtxt))  # 打印帮助文档
    
    
    print("""
    ------numpy.array------
    
    ------------numpy中最核心的结构------------------------------------------""")
    # 传入list结构,转换为ndarray格式
    vector = numpy.array([5, 10, 15, 20])  # 创造一维矩阵
    matrix = numpy.array([
        [5, 10, 15],
        [20, 25, 30],
        [35, 40, 45]
    ])  # 创造二维矩阵
    print(vector)
    print(matrix)
    
    print("""
    ------print(numpy对象.shape)------
    
    ------------打印矩阵结构(例如2×3,3×3之类)------------------------------------------""")
    vector = numpy.array([1, 2, 3, 4])
    print(vector.shape)
    matrix = numpy.array([
        [1, 2, 3],
        [4, 5, 6]
    ])
    print(matrix.shape)
    
    print("""
    ------numpy.array结构------
    
    ------------内部结构必须相同------------------------------------------""")
    numbers = numpy.array([1, 2, 3, 4])
    print(numbers)
    print(numbers.dtype)
    numbers = numpy.array([1, 2, 3, 4.0])
    print(numbers)
    print(numbers.dtype)
    numbers = numpy.array([1, 2, 3, '4'])
    print(numbers)
    print(numbers.dtype)
    
    print("""
    ------数据选取------
    
    ------------与python一样,通过索引读取数据------------------------------------------""")
    data_test = numpy.genfromtxt('Numpy_test.txt', delimiter = ',', dtype = str)
    print(data_test)
    # 读取hanmeimei的国家
    hmm_contry = data_test[2, 3]
    print("hanmeimei的国家是:{0}".format(hmm_contry))
    
    print("""
    ------切片选取------
    
    ------------与python一样,(起始值:终止值:步长)------------------------------------------""")
    vector = numpy.array([5, 10, 15, 20])
    print(vector[0:3])  # 左闭右开的区间
    matrix = numpy.array([
        [1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]
    ])
    print(matrix[:, 1])  # 取中间一列也就是每一行,第二个值
    print(matrix[:, 0:2])  # 取头两列也就是每一行,第一到第二个值(0:1左开右闭,所以要写0:2)
    
    print("""
    ------numpy判断------
    
    ------------判断某个元素是否在矩阵当中------------------------------------------""")
    vector = numpy.array([5, 10, 15, 20])
    matrix = numpy.array([
        [5, 10, 15],
        [20, 25, 30],
        [35, 40, 45]
    ])
    print(vector == 10)
    print(matrix == 10)
    equal_to_ten = vector == 10  # 返回bool类型的值
    print(vector[equal_to_ten])  # 当做索引
    second_column_25 = (matrix[:, 1] == 25)  # 判断第二列是否有25的值
    print(second_column_25)  # 对应每一行False  True False
    print(matrix[second_column_25])
    equal_to_ten_and_five = (vector == 10) & (vector == 5)  # 是同时否存在10和5,与操作
    print(equal_to_ten_and_five)
    equal_to_ten_or_five = (vector == 10) | (vector == 5)  # 是否存在10或5,或操作
    print(equal_to_ten_or_five)
    print(vector[equal_to_ten_or_five])
    
    print("""
    ------numpy.array类型的改变------
    
    ------------astype()函数,数据类型转换------------------------------------------""")
    vector = numpy.array(['1', '2', '3'])
    print(vector.dtype)
    print(vector)
    vector = vector.astype(float)
    print(vector.dtype)
    print(vector)
    
    print("""
    ------numpy.array求极值的操作------
    
    ------------min(),max()函数------------------------------------------""")
    vector = numpy.array([5, 10, 15, 20])
    print(vector.min())
    print(vector.max())
    
    print("""
    ------numpy.array按行求和,按列求和------
    
    ---------sum()方法---参数axis = 1按行,axis = 0按列------------------------------------------""")
    matrix = numpy.array([
        [5, 10, 15],
        [20, 25, 30],
        [35, 40, 45]
    ])
    print(matrix.sum(axis = 1))  # 按行求和
    print(matrix.sum(axis = 0))  # 按列求和
    
    print("""
    ------矩阵变换------
    
    ---------造矩阵:arange();矩阵变换:reshape()------------------------------------------""")
    print(numpy.arange(15))
    a = numpy.arange(15).reshape(3, 5)  # 3行5列
    print(a)
    print(a.shape)  # 矩阵a的行列
    print(a.ndim)  # 维度
    print(a.dtype)  # 数据类型
    print(a.size)  # 元素个数
    
    print("""
    ------初始化矩阵------
    
    ---------造0矩阵:zeros((元组表示矩阵行列))方法,创造1矩阵ones()方法------------------------------------------""")
    zero_matrix = numpy.zeros((3, 5))
    print(zero_matrix)
    one_matrix = numpy.ones((2, 3, 4), dtype = numpy.int32)
    print(one_matrix)
    
    print("""
    ------序列矩阵------
    
    ---------aragne()方法------------------------------------------""")
    sq_matrix = numpy.arange(10, 30, 5)  # 从10开始,不包括30,步长为5
    print(sq_matrix)
    
    print("""
    ------随机模块------
    
    ---------random((元组表示矩阵行列))方法------------------------------------------""")
    ran = 10 * numpy.random.random((2, 3))
    ran = ran.astype(numpy.int32)
    print(ran)
    
    print("""
    ------平均间隔矩阵------
    
    ---------linspase(起始值,最大值,个数)方法------------------------------------------""")
    lins = numpy.linspace(0, 1.1, 20)
    print(lins)
    
    print("""
    ------向量运算------
    
    ---------加减乘方------------------------------------------""")
    a = numpy.array([20, 30, 40, 50])
    b = numpy.arange(4)
    print(a)
    print(b)
    c = a - b
    print(c)
    c = c - 1
    print(c)
    print(b ** 2)  # 每一个值分别运算
    print(a < 35)
    
    print("""
    ------矩阵乘法------
    
    ---------对应位置乘法和点乘------------------------------------------""")
    A = numpy.array([
        [1, 1],
        [0, 1]
    ])
    B = numpy.array([
        [2, 0],
        [3, 4]
    ])
    print('A矩阵:
    {0}'.format(A))
    print('B矩阵:
    {0}'.format(B))
    print('A*B对应位置相乘:
    {0}'.format(A * B))
    print('A·B点乘:
    {0}'.format(A.dot(B)))
    print('A·B点乘:
    {0}'.format(numpy.dot(A, B)))
    
    print("""
    ------矩阵科学计算------
    
    ---------e的幂,平方根------------------------------------------""")
    B = numpy.arange(3)
    print(B)
    print(numpy.exp(B))  # 每个元素的为指数,e为底的次方
    print(numpy.sqrt(B))  # 每个元素的平方根
    
    print("""
    ------矩阵操作------
    
    ---------向下取整floor(),矩阵转向量ravel(),向量转矩阵a.shape(),矩阵转置a.T-----------------------""")
    a = numpy.floor(10 * numpy.random.random((3, 4)))
    print('矩阵a:
    {0}'.format(a), '
    ')
    print(a.ravel(), '
    ')  # 向量转矩阵
    a.shape = (6, 2)  # 矩阵转向量
    print(a, '
    ')
    print(a.T, '
    ')  # 矩阵转置
    print(a.reshape(3, -1), '
    ')  # 只管3行,列数多少自动计算
    
    print("""
    ------矩阵拼接------
    
    ---------按行拼接hstack(元组),按列拼接vstack(元组)------------------------------------------""")
    a = numpy.floor(10 * numpy.random.random((2, 2)))
    b = numpy.floor(10 * numpy.random.random((2, 2)))
    print(a, '
    ')
    print(b, '
    ')
    print(numpy.hstack((a, b)), '
    ')
    print(numpy.vstack((a, b)), '
    ')
    
    print("""
    ------矩阵切分------
    
    ---------纵切横分hsplit(矩阵,份数/(位置元组)),---横切纵分vsplit(矩阵,份数/(位置元组)),---------------""")
    a = numpy.floor(10 * numpy.random.random((2, 12)))
    print(a, '
    ')
    print(numpy.hsplit(a, 3), '
    ')
    print(numpy.hsplit(a, (3, 4)))  # 在第三个元素后切一刀,在第四个元素后切一刀
    a = numpy.floor(10 * numpy.random.random((12, 2)))
    print(a, '
    ')
    print(numpy.vsplit(a, 3))
    
    print("""
    ------复制问题------
    
    -------------------------------------------指向操作----------------------------------------------------""")
    """
        python中,一切皆对象,a与b指向同一个对象。当命令b去改变对象时,a由于也是指向该对象,所以都会改变。
    """
    a = numpy.arange(12)
    b = a
    print(b is a)
    b.shape = (3, 4)
    print(a.shape)
    print(id(a))
    print(id(b))
    
    print("""-----------------------------浅拷贝a.view()----------------------------------------------------""")
    """
        一切皆对象,所以矩阵中的元素也是对象。
        类似于python中的copy.copy(),浅拷贝,只拷贝一层对象,也就是之拷贝矩阵,并不拷贝矩阵中的对象。
    """
    c = a.view()
    print(c is a)
    c.shape = (2, 6)
    print(a.shape)
    c[0, 4] = 1234
    print(a)
    print(id(a))
    print(id(c))
    print("""-----------------------------深拷贝a.copy()----------------------------------------------------""")
    """
        一切皆对象,所以矩阵中的元素也是对象。
        类似于python中的copy.deepcopy(),深拷贝,拷贝所有层次的对象,不止拷贝矩阵,
        还将矩阵中元素所指向的对象也拷贝一份
    """
    d = a.copy()
    print(d is a)
    d[0, 0] = 9999
    print(d)
    print(a)
    
    print("""
    ------按行按列取最大值------
    
    ---------------------a.argmax(按行axis = 1/按列axis = 0)---------------------------------------------------""")
    data = numpy.sin(numpy.arange(20)).reshape(5, 4)
    print(data)
    ind = data.argmax(axis = 0)  # 每列的最大值,返回一个向量
    print(ind)
    print(data.shape[0])  # 返回行数
    print(data.shape[1])  # 返回列数
    data_max = data[ind, range(data.shape[1])]
    print(data_max)
    
    print("""
    ------矩阵扩展------
    
    ---------------------a.tile(a,(行,列))---------------------------------------------------""")
    a = numpy.arange(0, 40, 10)
    print(a)
    b = numpy.tile(a, (3, 5))
    print(b)
    
    print("""
    ------元素排序------
    
    -----------a.sort(按行axis = 1/按列axis = 0)---排序索引值numpy.argsort(a)---------------------""")
    a = numpy.array([
        [4, 3, 5],
        [1, 2, 1]
    ])
    print(a, '
    ')
    b = numpy.sort(a, axis = 1)
    print(b, '
    ')
    a.sort(axis = 1)
    print(a, '
    ')
    
    a = numpy.array([4, 3, 1, 2])
    j = numpy.argsort(a)  # 返回排序索引从小到大2310,2号位最小,0号位最大
    print(j, '
    ')
    print(a[j])

    运行结果:

    D:Pythonpython.exe G:/编程/python/project/TYD/01/01/02/09-14.py

    ------以矩阵的方式读取数据------

    ------------genfromtxt函数('文件路径',delimiter = '分隔符',dtype = 读取方式)---------------------
    <class 'numpy.ndarray'>
    [['name' 'gender' 'age' 'contry']
    ['lilei' 'm' '18' 'cn']
    ['hanmeimei' 'f' '18' 'cn']
    ['lucy' 'f' '19' 'uk']
    ['lili' 'f' '17' 'usa']
    ['tom' 'm' '18' 'uk']]

    ------numpy.array------

    ------------numpy中最核心的结构------------------------------------------
    [ 5 10 15 20]
    [[ 5 10 15]
    [20 25 30]
    [35 40 45]]

    ------print(numpy对象.shape)------

    ------------打印矩阵结构(例如2×3,3×3之类)------------------------------------------
    (4,)
    (2, 3)

    ------numpy.array结构------

    ------------内部结构必须相同------------------------------------------
    [1 2 3 4]
    int32
    [1. 2. 3. 4.]
    float64
    ['1' '2' '3' '4']
    <U11

    ------数据选取------

    ------------与python一样,通过索引读取数据------------------------------------------
    [['name' 'gender' 'age' 'contry']
    ['lilei' 'm' '18' 'cn']
    ['hanmeimei' 'f' '18' 'cn']
    ['lucy' 'f' '19' 'uk']
    ['lili' 'f' '17' 'usa']
    ['tom' 'm' '18' 'uk']]
    hanmeimei的国家是:cn

    ------切片选取------

    ------------与python一样,(起始值:终止值:步长)------------------------------------------
    [ 5 10 15]
    [2 5 8]
    [[1 2]
    [4 5]
    [7 8]]

    ------numpy判断------

    ------------判断某个元素是否在矩阵当中------------------------------------------
    [False True False False]
    [[False True False]
    [False False False]
    [False False False]]
    [10]
    [False True False]
    [[20 25 30]]
    [False False False False]
    [ True True False False]
    [ 5 10]

    ------numpy.array类型的改变------

    ------------astype()函数,数据类型转换------------------------------------------
    <U1
    ['1' '2' '3']
    float64
    [1. 2. 3.]

    ------numpy.array求极值的操作------

    ------------min(),max()函数------------------------------------------
    5
    20

    ------numpy.array按行求和,按列求和------

    ---------sum()方法---参数axis = 1按行,axis = 0按列------------------------------------------
    [ 30 75 120]
    [60 75 90]

    ------矩阵变换------

    ---------造矩阵:arange();矩阵变换:reshape()------------------------------------------
    [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
    [[ 0 1 2 3 4]
    [ 5 6 7 8 9]
    [10 11 12 13 14]]
    (3, 5)
    2
    int32
    15

    ------初始化矩阵------

    ---------造0矩阵:zeros((元组表示矩阵行列))方法,创造1矩阵ones()方法------------------------------------------
    [[0. 0. 0. 0. 0.]
    [0. 0. 0. 0. 0.]
    [0. 0. 0. 0. 0.]]
    [[[1 1 1 1]
    [1 1 1 1]
    [1 1 1 1]]

    [[1 1 1 1]
    [1 1 1 1]
    [1 1 1 1]]]

    ------序列矩阵------

    ---------aragne()方法------------------------------------------
    [10 15 20 25]

    ------随机模块------

    ---------random((元组表示矩阵行列))方法------------------------------------------
    [[6 7 3]
    [9 3 9]]

    ------平均间隔矩阵------

    ---------linspase(起始值,最大值,个数)方法------------------------------------------
    [0. 0.05789474 0.11578947 0.17368421 0.23157895 0.28947368
    0.34736842 0.40526316 0.46315789 0.52105263 0.57894737 0.63684211
    0.69473684 0.75263158 0.81052632 0.86842105 0.92631579 0.98421053
    1.04210526 1.1 ]

    ------向量运算------

    ---------加减乘方------------------------------------------
    [20 30 40 50]
    [0 1 2 3]
    [20 29 38 47]
    [19 28 37 46]
    [0 1 4 9]
    [ True True False False]

    ------矩阵乘法------

    ---------对应位置乘法和点乘------------------------------------------
    A矩阵:
    [[1 1]
    [0 1]]
    B矩阵:
    [[2 0]
    [3 4]]
    A*B对应位置相乘:
    [[2 0]
    [0 4]]
    A·B点乘:
    [[5 4]
    [3 4]]
    A·B点乘:
    [[5 4]
    [3 4]]

    ------矩阵科学计算------

    ---------e的幂,平方根------------------------------------------
    [0 1 2]
    [1. 2.71828183 7.3890561 ]
    [0. 1. 1.41421356]

    ------矩阵操作------

    ---------向下取整floor(),矩阵转向量ravel(),向量转矩阵a.shape(),矩阵转置a.T-----------------------
    矩阵a:
    [[8. 2. 5. 7.]
    [6. 5. 1. 3.]
    [4. 9. 7. 9.]]

    [8. 2. 5. 7. 6. 5. 1. 3. 4. 9. 7. 9.]

    [[8. 2.]
    [5. 7.]
    [6. 5.]
    [1. 3.]
    [4. 9.]
    [7. 9.]]

    [[8. 5. 6. 1. 4. 7.]
    [2. 7. 5. 3. 9. 9.]]

    [[8. 2. 5. 7.]
    [6. 5. 1. 3.]
    [4. 9. 7. 9.]]


    ------矩阵拼接------

    ---------按行拼接hstack(元组),按列拼接vstack(元组)------------------------------------------
    [[1. 7.]
    [3. 7.]]

    [[7. 6.]
    [3. 6.]]

    [[1. 7. 7. 6.]
    [3. 7. 3. 6.]]

    [[1. 7.]
    [3. 7.]
    [7. 6.]
    [3. 6.]]


    ------矩阵切分------

    ---------纵切横分hsplit(矩阵,份数/(位置元组)),---横切纵分vsplit(矩阵,份数/(位置元组)),---------------
    [[4. 0. 0. 8. 6. 3. 3. 8. 0. 0. 7. 6.]
    [2. 1. 4. 3. 7. 8. 1. 6. 1. 0. 2. 9.]]

    [array([[4., 0., 0., 8.],
    [2., 1., 4., 3.]]), array([[6., 3., 3., 8.],
    [7., 8., 1., 6.]]), array([[0., 0., 7., 6.],
    [1., 0., 2., 9.]])]

    [array([[4., 0., 0.],
    [2., 1., 4.]]), array([[8.],
    [3.]]), array([[6., 3., 3., 8., 0., 0., 7., 6.],
    [7., 8., 1., 6., 1., 0., 2., 9.]])]
    [[2. 8.]
    [1. 3.]
    [6. 8.]
    [5. 4.]
    [0. 9.]
    [4. 6.]
    [3. 6.]
    [4. 9.]
    [7. 9.]
    [7. 6.]
    [0. 2.]
    [2. 8.]]

    [array([[2., 8.],
    [1., 3.],
    [6., 8.],
    [5., 4.]]), array([[0., 9.],
    [4., 6.],
    [3., 6.],
    [4., 9.]]), array([[7., 9.],
    [7., 6.],
    [0., 2.],
    [2., 8.]])]

    ------复制问题------

    -------------------------------------------指向操作----------------------------------------------------
    True
    (3, 4)
    62145264
    62145264
    -----------------------------浅拷贝a.view()----------------------------------------------------
    False
    (3, 4)
    [[ 0 1 2 3]
    [1234 5 6 7]
    [ 8 9 10 11]]
    62145264
    62187344
    -----------------------------深拷贝a.copy()----------------------------------------------------
    False
    [[9999 1 2 3]
    [1234 5 6 7]
    [ 8 9 10 11]]
    [[ 0 1 2 3]
    [1234 5 6 7]
    [ 8 9 10 11]]

    ------按行按列取最大值------

    ---------------------a.argmax(按行axis = 1/按列axis = 0)---------------------------------------------------
    [[ 0. 0.84147098 0.90929743 0.14112001]
    [-0.7568025 -0.95892427 -0.2794155 0.6569866 ]
    [ 0.98935825 0.41211849 -0.54402111 -0.99999021]
    [-0.53657292 0.42016704 0.99060736 0.65028784]
    [-0.28790332 -0.96139749 -0.75098725 0.14987721]]
    [2 0 3 1]
    5
    4
    [0.98935825 0.84147098 0.99060736 0.6569866 ]

    ------矩阵扩展------

    ---------------------a.tile(a,(行,列))---------------------------------------------------
    [ 0 10 20 30]
    [[ 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30]
    [ 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30]
    [ 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30]]

    ------元素排序------

    -----------a.sort(按行axis = 1/按列axis = 0)---排序索引值numpy.argsort(a)---------------------
    [[4 3 5]
    [1 2 1]]

    [[3 4 5]
    [1 1 2]]

    [[3 4 5]
    [1 1 2]]

    [2 3 1 0]

    [1 2 3 4]

    Process finished with exit code 0

  • 相关阅读:
    生成函数代替伯努利数
    关于费用流
    GDOI注意事项
    计算几何 学习笔记
    jzoj5370
    图上的游戏
    小学生语文题
    arcane
    P2305 [NOI2014] 购票
    P3512 [POI2010]PIL-Pilots
  • 原文地址:https://www.cnblogs.com/Mjerry/p/9625364.html
Copyright © 2011-2022 走看看