zoukankan      html  css  js  c++  java
  • 【题解】 bzoj3693: 圆桌会议 (线段树+霍尔定理)

    bzoj3693

    Solution:

    • 显然我们可以把人和位置抽象成点,就成了一个二分图,然后就可以用霍尔定理判断是否能有解
    • 一开始我随便YY了一个(check)的方法:就是每次向后一组,我们就把那一组可以位置标记为(true),用线段树存储,比如我们处理到了第(i)组,线段树里面就是前面(i)组可以放在那一些位置上,(check)总共可以放的位置数目不小于前(i)组总人数就继续,否则输出(No),这样显然是错的,很容易举出反例,于是我进行了一下的神奇操作
    • 我们先按照原小组顺序(check)一遍,然后把每组的可放位置数目从小到大排序(第一关键字)且把每组人数从小到大排序(第二关键字)做一遍(check),最后每组的可放位置数目从小到大排序(第一关键字)且把每组人数从大到小排序(第二关键字)做一遍(check),三次都没输出(No),输出(Yes)。结果(A)掉了qwq。

    (以上为胡言乱语,假做法,如果有大佬能解释其中正确原理将不胜感激),下面我们来讲正常做法

    • 首先抽象成二分图是很显然的,然后我们就是要允许的时间范围内(check)
      以下,座位的左右我们用(L,R)表示,小组可以方的位置左右我们用(l,r)表示

    假设所有(l<r),也就是没有跨过环的断点那个位置的情况,显然可以拉成一条链

    • 我们考虑(L ightarrow R)区间,如果这个区间左右都是空的(没有小组站位置),显然是不用考虑的,所以我们就只用考虑(L,R)为某个小组的左边((l))和右边((r))
    • 这个区间的位置个数是(R-L+1),我们令(S)(l,r)均在(L,R)范围内的小组的人数和,那么如果(S>R-L+1),显然里面的小组无法满足安排位置的,这时我们就可以输出(No)
    • 上面的式子我们可以变一下形式( ightarrow S+L>R+1),这样我们可以将操作按照(R)从小到大排序,(L)从小到大排序(第二关键字)
    • 所以我们就可以不断向后推进小组,得到新的(R)(也就是这个小组的(r)),我们每到一个(R),先更新线段树里面的值,然后(Check)
    • 所有的(L)(这个(L)一定会是小于等于这个小组的(l),这个很显然,因为只与在(R)前面的(l)有关)进行(check),但这样就很浪费时间,我们就只用找出前面的最大值判断就可以了。

    然后就是跨越了环的情况

    • 我们可以把它拉成链,在多加一倍就可以了,如果还是满足(l<r)的情况,就拆成两个操作(l,r)(l+m,r+m)
    • 这个还要注意,以为实际上这个环长度只有(m),所以要确保找出来的前面的最大值到(R)的距离小于等于(m)
    • 还有一个地方就是,我们要提前判断他的人数总数是不是大于了(m),和小组的人数是不是大于位置个数了,不满足就直接输出(No)

    原因如下:存在反例,如:m=5,两个条件:[1,3],a1=2;[3,2],a2=4,上述方法会判定为能满足。。
    因为在查询[3,7]时,[1,3]和[6,8]均不包含于[3,7],事实上是包含的([3,3]∪[6,7])。。
    这种情况是把原区间从中间断开分到了两端。。
    此时查询区间总长一定为m(两端能接成一个区间),故事先特判总区间(所有ai之和<=m)即可
    简单来说:有可能在询问[Li,Ri+m] (且Ri=Li-1)一类的区间时,[Li,Ri]、[Li+m,Ri+m]的这种区间被断在了首尾两端,不过这种询问区间长度都是m,开始时直接特判ai总和是否小于m即可
    摘自leolyun(、)cdsszjj

    • By the way,这个题的(m)过大,我们还需要一个(Hash)
    • 就是这样了啦,喵~

    Code:

    正解(AC):

    //It is coded by ning_mew on 7.14
    #include<bits/stdc++.h>
    #define ls(x) node[x].ls
    #define rs(x) node[x].rs
    #define l(x) opt[x].l
    #define r(x) opt[x].r
    #define ad(x) opt[x].ad
    using namespace std;
    
    const int N=1e5+7,maxm=1e9+7;
    
    int n,m,T,cnt=1,tot=0,dfn=0,ont=1;
    int rehash[N*8],box[N*8];
    struct Opt{int l,r,ad;}opt[N*2];
    struct Node{
      int ls,rs,maxx,lazy;
      void clear(){ls=0;rs=0;maxx=0;lazy=0;}
    }node[N*8];
    
    bool cmp(const Opt &x,const Opt &y){
      if(x.r!=y.r)return x.r<y.r;return x.l<y.l;
    }
    bool cmp2(const int &x,const int &y){return x<y;}
    void Clear(){
      for(int i=1;i<=cnt;i++)node[i].clear();
      tot=0;dfn=0;ont=0;cnt=1;return;
    }
    void update(int num){node[num].maxx=max(node[ls(num)].maxx,node[rs(num)].maxx);return;}
    void Build(int num,int nl,int nr){
      if(nl==nr){node[num].maxx=rehash[nl];return;}
      int mid=(nl+nr)/2;
      ls(num)=++cnt;Build(ls(num),nl,mid);
      rs(num)=++cnt;Build(rs(num),mid+1,nr);
      update(num);
    }
    void pushdown(int num,int nl,int nr){
      int mid=(nl+nr)/2,lz=node[num].lazy;node[num].lazy=0;
      node[ls(num)].maxx+=lz,node[ls(num)].lazy+=lz;
      node[rs(num)].maxx+=lz;node[rs(num)].lazy+=lz;
      update(num);return;
    }
    void add(int num,int nl,int nr,int ql,int qr,int ad){
      if(ql<=nl&&nr<=qr){node[num].maxx+=ad;node[num].lazy+=ad;return;}
      if(nr<ql||qr<nl)return;
      int mid=(nl+nr)/2;pushdown(num,nl,nr);
      add(ls(num),nl,mid,ql,qr,ad);
      add(rs(num),mid+1,nr,ql,qr,ad);
      update(num);
    }
    int quary(int num,int nl,int nr,int ql,int qr){
      if(ql<=nl&&nr<=qr)return node[num].maxx;
      if(nr<ql||qr<nl)return -maxm;
      int mid=(nl+nr)/2;pushdown(num,nl,nr);
      return max(quary(ls(num),nl,mid,ql,qr),quary(rs(num),mid+1,nr,ql,qr));
    }
    int Hash(int x){
      int l=1,r=dfn,mid,ans=maxm,TT=0;
      while(l<=r){
        if(l==r)TT++;if(TT==2)break;
        mid=(l+r)>>1;
        if(rehash[mid]>=x)ans=min(ans,mid),r=mid-1;
        else l=mid+1;
      }return ans;
    }
    void work(){
      Clear();
      scanf("%d%d",&n,&m);int S=0;
      for(int i=1;i<=n;i++){
        int l,r,ad; scanf("%d%d%d",&l,&r,&ad);S+=ad;
        if(l<=r){
          box[++tot]=l;box[++tot]=r;box[++tot]=l+m;box[++tot]=r+m;
          opt[++ont].l=l;opt[ont].r=r;opt[ont].ad=ad;l+=m;r+=m;
          opt[++ont].l=l;opt[ont].r=r;opt[ont].ad=ad;
        }else{
          r+=m;box[++tot]=r;box[++tot]=l;
          opt[++ont].l=l;opt[ont].r=r;opt[ont].ad=ad;
        }
      }
      if(S>m){printf("No
    ");return;}
      sort(box+1,box+tot+1,cmp2);box[0]=-maxm;
      sort(opt+1,opt+ont+1,cmp);
      for(int i=1;i<=tot;i++)if(box[i]!=box[i-1]){rehash[++dfn]=box[i];}
      
      Build(1,1,dfn);
    
      int front=1;
      /////////front!!!!!
      for(int i=1;i<=ont;i++){
        if(r(i)-l(i)+1<ad(i)){printf("No
    ");return;}
        while(1){if(r(i)-rehash[front]+1<=m)break;else front++;}
        add(1,1,dfn,1,Hash(l(i)),ad(i));
        if(quary(1,1,dfn,front,Hash(l(i)))>r(i)+1){printf("No
    ");return;}
      }printf("Yes
    ");return;
    }
    int main(){
      scanf("%d",&T);
      for(int i=1;i<=T;i++)work();
      return 0;
    }
    

    假做法(AC):

    //It is coded by ning_mew on 7.14
    #include<bits/stdc++.h>
    #define ls(x) node[x].ls
    #define rs(x) node[x].rs
    using namespace std;
    
    const int maxn=1e9+7,_=1e5+7;
    
    int T,n,m,cnt=1;
    struct Opt{int l,r,ad;}opt[_];
    struct Node{
      int ls,rs,sum;bool lazy;
      Node(){ls=rs=sum=0;lazy=false;}
      void clear(){ls=rs=sum=0;lazy=false;}
    }node[maxn/100];
    
    void clear(){
      for(int i=1;i<=cnt;i++){node[i].clear();}return;
    }
    void pushdown(int num,int nl,int nr){
      if(!node[num].lazy)return;
      int mid=(nl+nr)/2; node[num].lazy=false;
      if(ls(num))node[ls(num)].lazy=true,node[ls(num)].sum=(mid-nl+1);
      else ls(num)=++cnt,node[ls(num)].lazy=true,node[ls(num)].sum=(mid-nl+1);
      if(rs(num))node[rs(num)].lazy=true,node[rs(num)].sum=(nr-mid);
      else rs(num)=++cnt,node[rs(num)].lazy=true,node[rs(num)].sum=(nr-mid);
    }
    void update(int num){
      node[num].sum=0;
      if(ls(num))node[num].sum+=node[ls(num)].sum;
      if(rs(num))node[num].sum+=node[rs(num)].sum;
      return;
    }
    void add(int num,int nl,int nr,int ql,int qr){
      //cout<<num<<' '<<nl<<' '<<nl<<' '<<nr<<endl;
      if(ql<=nl&&nr<=qr){node[num].sum=nr-nl+1;node[num].lazy=true;return;}
      if(nr<ql||qr<nl)return;
      int mid=(nl+nr)>>1;
      pushdown(num,nl,nr);
      if(ls(num))add(ls(num),nl,mid,ql,qr);
      else ls(num)=++cnt,add(ls(num),nl,mid,ql,qr);
      if(rs(num))add(rs(num),mid+1,nr,ql,qr);
      else rs(num)=++cnt,add(rs(num),mid+1,nr,ql,qr);
      update(num);return;
    }
    int quary(int num,int nl,int nr,int ql,int qr){
      if(nr<ql||qr<nl)return 0;
      if(ql<=nl&&nr<=qr)return node[num].sum;
      int mid=(nl+nr)/2,ans=0;
      pushdown(num,nl,nr);
      if(ls(num))ans+=quary(ls(num),nl,mid,ql,qr);
      if(rs(num))ans+=quary(rs(num),mid+1,nr,ql,qr);
      return ans;
    }
    bool cmp1(const Opt &x,const Opt &y){
      int xx=(x.r-x.l+1+m)%m,yy=(y.r-y.l+1+m)%m;
      if(xx!=yy)return xx<yy;return x.ad>y.ad;
    }
    bool cmp2(const Opt &x,const Opt &y){
      int xx=(x.r-x.l+1+m)%m,yy=(y.r-y.l+1+m)%m;
      if(xx!=yy)return xx<yy;return x.ad<y.ad;
    }
    void work(){
      scanf("%d%d",&n,&m);
      for(int i=1;i<=n;i++){scanf("%d%d%d",&opt[i].l,&opt[i].r,&opt[i].ad);}
      clear(); 
      int l,r,ad,SS=0;cnt=1;
      for(int i=1;i<=n;i++){
        l=opt[i].l;r=opt[i].r;ad=opt[i].ad; SS+=ad;
        if(ad>(r-l+1+m)%m){printf("No
    ");return;}
        if(l<=r)add(1,0,m-1,l,r);
        else add(1,0,m-1,l,m-1),add(1,0,m-1,0,r);
        if(node[1].sum<SS){printf("No
    ");return;}
      }
      clear();sort(opt+1,opt+n+1,cmp1); SS=0;cnt=1;
      for(int i=1;i<=n;i++){
        l=opt[i].l;r=opt[i].r;ad=opt[i].ad;
        SS+=ad;
        if(ad>(r-l+1+m)%m){printf("No
    ");return;}
        if(l<=r)add(1,0,m-1,l,r);
        else add(1,0,m-1,l,m-1),add(1,0,m-1,0,r);
        if(node[1].sum<SS){printf("No
    ");return;}
      }
      clear();sort(opt+1,opt+n+1,cmp2);SS=0;cnt=1;
      for(int i=1;i<=n;i++){
        l=opt[i].l;r=opt[i].r;ad=opt[i].ad; SS+=ad;
        if(ad>(r-l+1+m)%m){printf("No
    ");return;}
        if(l<=r)add(1,0,m-1,l,r);
        else add(1,0,m-1,l,m-1),add(1,0,m-1,0,r);
        if(node[1].sum<SS){printf("No
    ");return;}
      }printf("Yes
    ");return;
    }
    int main(){
      scanf("%d",&T);
      for(int i=1;i<=T;i++)work();
      return 0;
    }
    

    我知道这个是权限题,但我们穷孩子就只能用(bzoj)发下来的数据辣悄悄的啊

    博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会终生找不到妹子!!!

  • 相关阅读:
    关于json前后台传值
    [LeetCode] #29 Divide Two Integers
    [LeetCode] #28 Implement strStr()
    [LeetCode] #27 Remove Element
    [LeetCode] #26 Remove Duplicates from Sorted Array
    [LeetCode] #25 Reverse Nodes in k-Group
    [LeetCode] #24 Swap Nodes in Pairs
    [LeetCode] #23 Merge k Sorted Lists
    [LeetCode] #22 Generate Parentheses
    [LeetCode] #21 Merge Two Sorted Lists
  • 原文地址:https://www.cnblogs.com/Ning-Mew/p/9310914.html
Copyright © 2011-2022 走看看