zoukankan      html  css  js  c++  java
  • 线性递推DP之 HDU -1465不容易系列之一

    不容易系列之一

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 24797    Accepted Submission(s): 10822

    Problem Description

    大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
    做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
    话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。

    不幸的是,这种小概率事件又发生了,而且就在我们身边:
    事情是这样的——HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!
    现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?

    Input

    输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正整数n(1<n<=20),n表示8006的网友的人数。

    Output

    对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。

    Sample Input

    2 3

    Sample Output

    1 2

    思路:

    (1) , 我们可以把整个过程模拟成为数的匹配问题,给你一堆数1 - n , 每个数不能在自己的位置

    (2) , 对于 n = 1 , 2 , 3 我们可以清晰地知道答案分别为 0 , 1 , 2 , 但是对于3以后的数却不是不好推导出来,那怎么办呢?

    (3) , 首先 对于 i 我么假设 每个数都在他对应的位置 ,若满足题意的话我们可以让第 i 个数与前面的一个数交换位置,剩余的i-2个数的情况就跟dp[i-2] (dp数组存的是第 i 个位置有多少种情况)的情况一样了,那么最后一个位置有i-1个位置可以交换因此 dp[i] += dp[i-2]*(i-1)

    (4) , 但是上面的情况没有包含所有的情况 ,比如 : 不是刚好交换的这种情况 , 假设第 i 个数为C 他的前面分别有两个数A , B ,现在C占据了A的位置,但是B占据了C的位置,这种情况怎么样呢,我们可以这样假设 对于已经是乱序的 i - 1 , 现在第 i 个数进来与前面一个数交换位置 ,刚好满足我所描述的那种情况前面i-1个位置有 dp[i-1]种情况 , 而对于每次第 i 个位置又都有i-1个位置可以交换因此 dp[i] += dp[i-1]*(i-1)

    思路结束

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    ll dp[22];
    void init() {
    	dp[0] = 0; dp[1] = 0; dp[2] = 1; 
    	for (int i = 3;i<22;i++) {
    		dp[i] = dp[i-1]*(i-1) + dp[i-2]*(i-1);
    	}
    }
    int main()
    {
    	init(); int t;
    	while(~scanf("%d",&t))
    	{
    		printf("%lld
    ",dp[t]);
    	}
    	return 0;
    } 
  • 相关阅读:
    tcpdump分析tcp连接的建立、传输和关闭
    链表排序:冒泡和快排
    linux文件IO操作篇 (一) 非缓冲文件
    linux文件操作篇 (四) 目录操作
    linux文件操作篇 (三) 文件状态和操作属性
    linux文件操作篇 (二) 打开和关闭文件
    linux文件操作篇 (一)文件属性与权限
    linux编程(三)多线程
    linux编程(二)进程
    linux编程(一)文件IO 目录
  • 原文地址:https://www.cnblogs.com/Nlifea/p/11746003.html
Copyright © 2011-2022 走看看