zoukankan      html  css  js  c++  java
  • POJ2104(可持久化线段树)

    K-th Number

    Time Limit: 20000MS   Memory Limit: 65536K
    Total Submissions: 58759   Accepted: 20392
    Case Time Limit: 2000MS

    Description

    You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
    That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
    For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

    Input

    The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
    The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given. 
    The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

    Output

    For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

    Sample Input

    7 3
    1 5 2 6 3 7 4
    2 5 3
    4 4 1
    1 7 3

    Sample Output

    5
    6
    3

    Hint

    This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.

    Source

    Northeastern Europe 2004, Northern Subregion
     
      1 //2017-08-07
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <iostream>
      5 #include <algorithm>
      6 #define ll long long
      7 #define mid ((l+r)>>1)
      8 
      9 using namespace std;
     10 
     11 const int N = 100010;
     12 const int M = N * 30;
     13 struct node{//第i棵线段树的节点维护插入i个数字,每个区间的数字个数。
     14     int lson, rson, sum;
     15 }tree[M];
     16 int root[N], arr[N], arr2[N], tot;
     17 int n, m, q;
     18 
     19 void init(){//将原数列排序并去重
     20     tot = 0;
     21     for(int i = 1; i <= n; i++)
     22         arr2[i] = arr[i];
     23     sort(arr2+1, arr2+1+n);
     24     m = unique(arr2+1, arr2+1+n)-arr2-1;
     25 }
     26 
     27 int getID(int x){
     28     return lower_bound(arr2+1, arr2+1+m, x) - arr2;
     29 }
     30 
     31 int build(int l, int r){
     32     int rt = tot++;
     33     tree[rt].sum = 0;
     34     if(l != r){
     35         tree[rt].lson = build(l, mid);
     36         tree[rt].rson = build(mid+1, r);
     37     }
     38     return rt;
     39 }
     40 
     41 int update(int rt, int pos, int value){
     42     int newroot = tot++, tmp = newroot;
     43     tree[newroot].sum = tree[rt].sum + value;
     44     int l = 1, r = m;
     45     while(l < r){
     46         if(pos <= mid){
     47             tree[newroot].lson = tot++;
     48             tree[newroot].rson = tree[rt].rson;
     49             newroot = tree[newroot].lson;
     50             rt = tree[rt].lson;
     51             r = mid;
     52         }else{
     53             tree[newroot].rson = tot++;
     54             tree[newroot].lson = tree[rt].lson;
     55             newroot = tree[newroot].rson;
     56             rt = tree[rt].rson;
     57             l = mid+1;
     58         }
     59         tree[newroot].sum = tree[rt].sum + value;
     60     }
     61     return tmp;
     62 }
     63 
     64 int query(int lroot, int rroot, int k){
     65     int l = 1, r = m;
     66     while(l < r){
     67         if(tree[tree[lroot].lson].sum - tree[tree[rroot].lson].sum >= k){
     68             r = mid;
     69             lroot = tree[lroot].lson;
     70             rroot = tree[rroot].lson;
     71         }else{
     72             l = mid + 1;
     73             k -= tree[tree[lroot].lson].sum - tree[tree[rroot].lson].sum;
     74             lroot = tree[lroot].rson;
     75             rroot = tree[rroot].rson;
     76         }
     77     }
     78     return l;
     79 }
     80 
     81 int main()
     82 {
     83     while(scanf("%d%d", &n, &q)!=EOF){
     84         for(int i = 1; i <= n; i++)
     85             scanf("%d", &arr[i]);
     86         init();
     87         root[n+1] = build(1, m);
     88         for(int i = n; i > 0; i--){
     89             int pos = getID(arr[i]);
     90             root[i] = update(root[i+1], pos, 1);
     91         }
     92         while(q--){
     93             int l, r, k;
     94             scanf("%d%d%d", &l, &r, &k);
     95             printf("%d
    ", arr2[query(root[l], root[r+1], k)]);
     96         }
     97     }
     98 
     99     return 0;
    100 }
  • 相关阅读:
    [转载]setup factory使用方法
    MFC中调用WPF教程
    Reduce the Number of SQL Statements
    Library Cache Hit Ratio
    Seconds in wait
    PX Deq: Execute Reply等待事件
    RoundTrip Time
    Changing an Init.ora Parameter
    PX qref latch等待事件
    提高DBWR进程的吞吐量
  • 原文地址:https://www.cnblogs.com/Penn000/p/7301562.html
Copyright © 2011-2022 走看看