zoukankan      html  css  js  c++  java
  • 纠删码简介

    纠删码(Erasure Code)中的数学知识

    背景

      在数据存储领域,Hadoop采用三副本策略有效的解决了存储的容错问题,但是三副本策略中磁盘的利用效率比较低,仅有33%,而且副本带来的成本压力实在太高,后来适时的出现了纠删码的概念。当冗余级别为n+m时,将这些数据块分别存放在n+m个硬盘上,这样就能容忍m个(假设初始数据有n个)硬盘发生故障。当不超过m个硬盘发生故障时,只需任意选取n个正常的数据块就能计算得到所有的原始数据。纠删码以更低的存储成本备受青睐,目前Microsoft、Google、Facebook、Amazon、淘宝(TFS)都已经在自己的产品中采用了Erasure Code.

      在以上背景的基础上,本文在纠删码的编码、解码中采用的矩阵数学知识,以及矩阵分解中用到的LU分解等数学知识进行分析,并在文末给出相应的代码示例。

    纠删码工作原理简介:

      RS(Reed-Solomom)码是一种比较常见的纠删码,它的两个参数m和n分别代表校验块个数和原始数据块个数。

    纠删码编码过程:

    在图中的编码过程,C代表校验块,D代表原始的数据块。

    当丢失了部分数据,如图

     

    纠删码解码过程:

    Step1:在编码矩阵中去掉丢失数据块以及该数据块对应的行。即B矩阵变为了n*n 维度的方阵,C与D组合的矩阵由(n+m)行变为n行,在上述假设过程中,我们得到新的矩阵以及对应的矩阵运算关系式,其中在丢失了部分数据块后,D所代表的原始数据块便成为了要求的目标。

     Step2:求B’的逆矩阵。

     

    Step3:可以采用对等式两边同时乘上B’的逆矩阵,于是得到所求解。

     

     

    为了保证B’逆矩阵是存在的,必须保证B’矩阵是可逆的,在通常的计算过程中,用于校检的黄色部分数据块采用范德蒙矩阵。

    函数Inverse[B′]代表B'的逆矩阵,I代表单位矩阵:

    Inverse[B′]∗B′∗D=Inverse[B′]∗S
    I∗D=Inverse[B′]∗S
    D=Inverse[B′]∗S

    Python模拟纠删码数据恢复的流程

    # Erasure Code
    import numpy as np
    # 备份数量
    backup_up = 2
    # 原始数据
    data = np.array([1, 2, 3, 4, 5])
    # 根据纠删码原理生成的数据
    vander_data = np.concatenate((np.identity(len(data)), np.vander(data, 3).transpose()::-1]), axis=0)
    storage_data = vander_data.dot(data)
    print('生成数据',storage_data)
    # 模拟数据丢失
    loss_data = np.concatenate((storage_data[0:3], storage_data[5:7]), axis=0)print('丢失后数据', loss_data)
    # 恢复数据
    recover_data = np.linalg.inv(np.concatenate((vander_data[0:3], vander_data[5:7]), axis=0)).dot(loss_data)
    print('恢复数据',recover_data)
    
    # 输出结果
    # 生成数据 [  1.   2.   3.   4.   5.  15.  55. 225.]
    # 丢失后数据 [ 1.  2.  3. 15. 55.]
    # 恢复数据 [1. 2. 3. 4. 5.]  

    正交分解

      矩阵的正交分解又称为QR分解,是将矩阵分解为一个正交矩阵Q和一个上三角矩阵的乘积的形式。任意实数方阵A,都能被分解为 。这里的Q为正交单位阵,即 R是一个上三角矩阵。这种分解被称为QR分解。 QR分解也有若干种算法,常见的包括Gram–Schmidt、Householder和Givens算法。 QR分解是将矩阵分解为一个正交矩阵与上三角矩阵的乘积。这里仅记录一下第一种分解的计算过程(Matlab代码以及例题计算过程)。

    Schmidt正交化

      定理1 设A是n阶实非奇异矩阵,则存在正交矩阵Q和实非奇异上三角矩阵R使A有QR分解;且除去相差一个对角元素的绝对值(模)全等于1的对角矩阵因子外,分解是唯一的.

      定理2 设A是m×n实矩阵,且其n个列向量线性无关,则A有分解A=QR,其中Q是m×n实矩阵,且满足QHTQ=E,R是n阶实非奇异上三角矩阵该分解除去相差一个对角元素的绝对值(模)全等于1的对角矩阵因子外是唯一的.用Schmidt正交化分解方法对矩阵进行QR分解时,所论矩阵必须是列满秩矩阵。

    算法步骤

    1. 写出矩阵的列向量;
    2. 列向量按照Schmidt正交化正交;
    3. 得出矩阵的Q′,R′;
    4. 对R′的列向量单位化得到Q,R′的每行乘R′每列的模

    matlab代码

    function[X,Q,R] = QRSchmidt(A,b)
    %方阵的QR的Gram-Schmidt正交化分解法,并用于求解AX=b方程组[m,n]=size(A); 
    if m~=n
        %如果不是方阵,则不满足QR分解要求
        disp('不满足QR分解要求');
    end
    Q=zeros(m,n);
    X=zeros(n,1);
    R=zeros(n);
    for k=1:nR(k,k)=norm(A(:,k));
        if R(k,k)==0
            break;
        end
        Q(:,k)=A(:,k)/R(k,k);
        for j=k+1:n
            R(k,j)=Q(:,k)'*A(:,j); 
            A(:,j)=A(:,j)-R(k,j)*Q(:,k);
        end
    if nargin==2
        b=Q'* b;
        X(n)=b(n)/R(n,n);
        for i=n-1:-1:1
            X(i)=(b(i)-sum(R(i,i+1:n).*X(i+1:n)'))/R(i,i);
        end
    else
        X=[];
    end
    end

    手撕计算过程

     

    matlab自带方法

    %产生一个3*3大小的魔方矩阵
    A=magic(3)
    [Q,R]=qr(A)

    参考文献:

    本人计算机小白一枚,对编程有浓厚兴趣,在此贴出自己的计算机学习历程,还有很多不足,望多多指教! 读书后发现好多的内容与具体专业有偏差,没来得及完成,虽然“有时间我就会做...”是人生最大的谎言,但有时间我会继续搞定未完成的内容,有始有终,兴趣使然!
  • 相关阅读:
    软件设计师经验分享
    数据库设计基本规范
    UEditor上传文件的默认地址修改
    mongoDB简单介绍及安装
    链表中倒数第k个结点
    一入python深似海--对象的属性
    stl--vector 操作实现
    android5.x加入sim1,sim2标识
    leetCode 27.Remove Element (删除元素) 解题思路和方法
    java8新增特性(一)---Lambda表达式
  • 原文地址:https://www.cnblogs.com/Robin5/p/11710005.html
Copyright © 2011-2022 走看看