题意:有多个矩形分布在[0, 0]到[R, R]的的范围内,画一条竖线分割成两块矩形,使得左边包括矩形的面积大于等于右边的面积,在这个前提下使得画的竖线尽量远
分析:二分答案,当面积相等时,判断再往右一个单位是否还可以相等,若不行则答案唯一确定,否则可以往右移动,即最后的竖线要不在一个矩形内或者在矩形边缘时最优.
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e4 + 10;
struct Point {
int x1, y, w, h, x2;
bool operator < (const Point &r) const {
return x1 < r.x1;
}
}p[N];
int n, R;
ll tot;
ll cal(int mid) {
ll ret = 0;
for (int i=1; i<=n; ++i) {
if (p[i].x1 >= mid) break;
else if (p[i].x2 <= mid) ret += 1ll * p[i].w * p[i].h;
else {
ret += 1ll * (mid - p[i].x1) * p[i].h;
}
}
return ret;
}
bool check(int mid) {
for (int i=1; i<=n; ++i) {
if (p[i].x1 < mid && mid < p[i].x2) return true;
}
return false;
}
int solve() {
sort (p+1, p+1+n);
int l = 0, r = R;
while (l + 1 < r) {
int mid = (l + r) >> 1;
ll LA = cal (mid);
ll RA = tot - LA;
if (LA < RA) l = mid;
else if (LA == RA) {
if (check (mid) || check (mid + 1)) {
return mid;
}
else l = mid;
}
else {
r = mid;
}
}
if (check (r)) return r;
for (int i=1; i<=n; ++i) {
if (p[i].x1 >= r) return p[i].x1;
}
return R;
}
int main(void) {
int T; scanf ("%d", &T);
while (T--) {
scanf ("%d", &R);
scanf ("%d", &n);
tot = 0;
for (int i=1; i<=n; ++i) {
scanf ("%d%d%d%d", &p[i].x1, &p[i].y, &p[i].w, &p[i].h);
p[i].x2 = p[i].x1 + p[i].w;
tot += 1ll * p[i].w * p[i].h; //?
}
int ans = solve ();
printf ("%d
", ans);
}
return 0;
}