zoukankan      html  css  js  c++  java
  • tensorflow 应用fizzbuzz

    60个字符解决fizzbuzz问题:

    for x in range(101):print"fizz"[x%3*4::]+"buzz"[x%5*4::]or x
    

    下面是用tensorflow解决,跟上面的比起来非常复杂,但很有意思,而且适合学习tensorflow,发散一下思维,拓展tensorflow的应用范围。

    tensorflow 应用fizzbuzz

    转载请注明地址:http://www.cnblogs.com/SSSR/p/5630497.html

    直接上代码如下:

    具体案例解释请参考:http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/

    # -*- coding: utf-8 -*-
    """
    Created on Wed Jun 29 10:57:41 2016
    
    @author: ubuntu
    """
    
    # Fizz Buzz in Tensorflow!
    # see http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/
    
    import numpy as np
    import tensorflow as tf
    
    NUM_DIGITS = 10
    
    # Represent each input by an array of its binary digits.
    def binary_encode(i, num_digits):
        return np.array([i >> d & 1 for d in range(num_digits)])
    
    # One-hot encode the desired outputs: [number, "fizz", "buzz", "fizzbuzz"]
    def fizz_buzz_encode(i):
        if   i % 15 == 0: return np.array([0, 0, 0, 1])
        elif i % 5  == 0: return np.array([0, 0, 1, 0])
        elif i % 3  == 0: return np.array([0, 1, 0, 0])
        else:             return np.array([1, 0, 0, 0])
    
    # Our goal is to produce fizzbuzz for the numbers 1 to 100. So it would be
    # unfair to include these in our training data. Accordingly, the training data
    # corresponds to the numbers 101 to (2 ** NUM_DIGITS - 1).
    trX = np.array([binary_encode(i, NUM_DIGITS) for i in range(101, 2 ** NUM_DIGITS)])
    trY = np.array([fizz_buzz_encode(i)          for i in range(101, 2 ** NUM_DIGITS)])
    
    # We'll want to randomly initialize weights.
    def init_weights(shape):
        return tf.Variable(tf.random_normal(shape, stddev=0.01))
    
    # Our model is a standard 1-hidden-layer multi-layer-perceptron with ReLU
    # activation. The softmax (which turns arbitrary real-valued outputs into
    # probabilities) gets applied in the cost function.
    def model(X, w_h, w_o):
        h = tf.nn.relu(tf.matmul(X, w_h))
        return tf.matmul(h, w_o)
    
    # Our variables. The input has width NUM_DIGITS, and the output has width 4.
    X = tf.placeholder("float", [None, NUM_DIGITS])
    Y = tf.placeholder("float", [None, 4])
    
    # How many units in the hidden layer.
    NUM_HIDDEN = 100
    
    # Initialize the weights.
    w_h = init_weights([NUM_DIGITS, NUM_HIDDEN])
    w_o = init_weights([NUM_HIDDEN, 4])
    
    # Predict y given x using the model.
    py_x = model(X, w_h, w_o)
    
    # We'll train our model by minimizing a cost function.
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(py_x, Y))
    train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost)
    
    # And we'll make predictions by choosing the largest output.
    predict_op = tf.argmax(py_x, 1)
    
    # Finally, we need a way to turn a prediction (and an original number)
    # into a fizz buzz output
    def fizz_buzz(i, prediction):
        return [str(i), "fizz", "buzz", "fizzbuzz"][prediction]
    
    BATCH_SIZE = 128
    
    # Launch the graph in a session
    with tf.Session() as sess:
        tf.initialize_all_variables().run()
    
        for epoch in range(10000):
            # Shuffle the data before each training iteration.
            p = np.random.permutation(range(len(trX)))
            trX, trY = trX[p], trY[p]
    
            # Train in batches of 128 inputs.
            for start in range(0, len(trX), BATCH_SIZE):
                end = start + BATCH_SIZE
                sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})
    
            # And print the current accuracy on the training data.
            print(epoch, np.mean(np.argmax(trY, axis=1) ==
                                 sess.run(predict_op, feed_dict={X: trX, Y: trY})))
    
        # And now for some fizz buzz
        numbers = np.arange(1, 101)
        teX = np.transpose(binary_encode(numbers, NUM_DIGITS))
        teY = sess.run(predict_op, feed_dict={X: teX})
        output = np.vectorize(fizz_buzz)(numbers, teY)
    
        print(output)
    

      

  • 相关阅读:
    IIS部署Asp.Net Core 项目运行时报错,处理程序“aspNetCore”在其模块列表中有一个错误模块“AspNetCoreModuleV2"
    Linux Mysql5.7.22安装
    Nginx初体验
    asp.net core Csc任务不支持SharedCompilationId参数,请确认改参数存在于此任务中,并且是可设置的公共实例属性
    【Node.js 】Express框架
    【Node.js】 初体验
    Mongodb 配置
    【C#】Windows服务守护并发送邮件通知
    新建【Git】仓库后给使用者授权
    Git提交修改的代码出现提交不上去
  • 原文地址:https://www.cnblogs.com/SSSR/p/5630497.html
Copyright © 2011-2022 走看看