zoukankan      html  css  js  c++  java
  • 分支定界(Branch&bound)算法

    背包问题,一般可以用动态规划解决。当涉及到的物体数目比较多,填表法所需要的存储空间很大$O(nW)$,每次都以内存不足告终。

    参考:

    https://www.geeksforgeeks.org/implementation-of-0-1-knapsack-using-branch-and-bound/

    1.填表法:

    def solve_it(input_data):
        # Modify this code to run your optimization algorithm
    
        # parse the input
        lines = input_data.split('
    ')
    
        firstLine = lines[0].split()
        item_count = int(firstLine[0])
        capacity = int(firstLine[1])
    
        items = []
    
        for i in range(1, item_count+1):
            line = lines[i]
            parts = line.split()
            items.append(Item(i-1, int(parts[0]), int(parts[1])))
    
        #print item information
       # for i in range(0, len(items)):
        #    print str(items[i].index) + ',' + str(items[i].value) + ',' + str(items[i].weight) +'
    '
    
        # a trivial greedy algorithm for filling the knapsack
        # it takes items in-order until the knapsack is full
        value = 0
        weight = 0
        taken = [0]*len(items) #为1则表示选择了该物体
        '''
        for item in items:
            if weight + item.weight <= capacity:
                taken[item.index] = 1
                value += item.value
                weight += item.weight
        '''
        
        result = np.zeros([capacity+1, item_count+1]) #表的大小为n*W,n为物体数目,W为包的容量
        #result[k][0] = 0 for all k
        for i in range(0, capacity+1):
            result[i][0] = 0
        for i in range(0, item_count+1):
            result[0][i] = 0
        #填表法
        for k in range(1, capacity+1):
            for j in range(1, item_count+1): #第j件物品其索引值为j-1
                if k-items[j-1].weight >= 0:
                    result[k][j] =  max([result[k][j-1], result[k-items[j-1].weight][j-1] + items[j-1].value])
                else:
                    result[k][j] = result[k][j-1]
        value = int(result[capacity][item_count])
        out_to_csv(result)
        #根据表寻找最优解的路径
        k = capacity
        j = item_count
        while(result[k,j] != 0):
            if result[k][j] > result[k][j-1]:
                k = k - items[j-1].weight
                taken[j-1] = 1
                j = j - 1
            else:
                j = j - 1
            
                
    
    
        # prepare the solution in the specified output format
        output_data = str(value) + ' ' + str(0) + '
    '
        output_data += ' '.join(map(str, taken))
        return output_data

    填表法在物体数目较小的时候可以解决,单所需表的存储空间比较大的时候开始报错。

    故选择了分支定界算法。

    2. 关于python3中自定义比较函数的用法:

    参考自:https://www.polarxiong.com/archives/Python3-%E6%89%BE%E5%9B%9Esort-%E4%B8%AD%E6%B6%88%E5%A4%B1%E7%9A%84cmp%E5%8F%82%E6%95%B0.html 

    from functools import cmp_to_key
    
    nums = [1, 3, 2, 4]
    nums.sort(key=cmp_to_key(lambda a, b: a - b))
    print(nums)  # [1, 2, 3, 4]

    2.1 我的自定义比较函数:

    from functools import cmp_to_key
    #自定义比较函数
    def mycmp(item1, item2): 
        if(item1.value*1.0/item1.weight > item2.value*1.0/item2.weight): #value/weight大的排前边
            return -1
        else:
            return 0
    #关于python3的自定义比较函数用法
    items.sort(key=cmp_to_key(lambda a, b : mycmp(a,b))) 

    2.2 用到了节点类:

    #节点类        
    class Node:
        def __init__(self, level, curvalue, room, bestvalue, taken, capacity): #成员变量
            self.level = level 
            self.curvalue = curvalue
            self.room = room
            self.bestvalue = bestvalue
            self.path = taken
            self.capacity = capacity
    
        def show(self):
            print(self.level , ",", self.curvalue, ",", self.room, "," , self.bestvalue)
        #所求的bound值
        def bound(self, items):
            weight = 0
            value = 0
            if self.level == -1:
                for i in range(len(items)):
                    if weight + items[i].weight <= self.capacity:
                        value += items[i].value
                        weight += items[i].weight
                    else:
                        value += (self.capacity - weight) * 1.0 / items[i].weight * items[i].value
                        break
            else:
                value += self.curvalue
                weight += self.capacity - self.room
                for i in range(self.level+1, len(items), 1):
                    if weight + items[i].weight <= self.capacity:
                        value += items[i].value
                        weight += items[i].weight
                    else:
                        value += (self.capacity - weight) * 1.0 / items[i].weight * items[i].value
                        break
            return value

    3. 深度优先的分支定界。用栈实现,未用递归。

    def solve_it(input_data):
        # Modify this code to run your optimization algorithm
    
        # parse the input
        lines = input_data.split('
    ')
    
        firstLine = lines[0].split()
        item_count = int(firstLine[0]) #物体数目
        capacity = int(firstLine[1]) #背包容量
        items = []  
        
        for i in range(1, item_count+1):
            line = lines[i]
            parts = line.split()
            items.append(Item(i-1, int(parts[0]), int(parts[1]))) #物体初始化
    
      
        value = 0
        weight = 0
        taken = [0]*len(items)  
        empty = [0]*len(items)    
        #关于python3的自定义比较函数用法
        items.sort(key=cmp_to_key(lambda a, b : mycmp(a,b))) 
        
      #  for item in items:
       #     print (str(item.index) + "," + str(item.value) + "," + str(item.weight))
        
        stack = [] #深度优先用栈实现,python中list代替
        u = Node(-1, 0, capacity, 0, empty, capacity)
        temp = u.bound(items)
        u.bestvalue = temp
       # print("curvalue:", u.curvalue) 
        #print("bound:", u.bestvalue)
        stack.append(u)
        max_profit = 0
        while(len(stack) != 0):
            #弹出末尾的节点
            t = stack.pop() 
            v = Node(-1, 0, capacity, 0, empty, capacity)
            if t.level == -1:
                v.level = 0
            if t.level == item_count-1:
                continue
            #not choose this item
            v.level = t.level + 1
            v.room = t.room
            v.curvalue = t.curvalue
            v.bestvalue = v.bound(items)
            v.path = t.path.copy() #注意Python中list为引用,故不能直接赋值,而是用copy()方法
            if v.bestvalue > max_profit:
                stack.append(v)
                if v.level == item_count -1:
                    max_profit = v.curvalue #保留最大profit
                    taken = v.path #保留最优解
    
            #choose this item
            v1 = Node(-1, 0, capacity, 0, empty, capacity)
            v1.level = t.level + 1
            v1.room = t.room - items[v1.level].weight
            v1.curvalue = t.curvalue + items[v1.level].value
    #        print("curvalue:", v1.curvalue) 
            #copy(), 不能直接赋值,因为都是引用
            v1.path = t.path.copy() 
            v1.path[items[v1.level].index] = 1
            v1.bestvalue = t.bestvalue
    #        print("v1.path:", v1.path)
            if (v1.room >= 0) and (v1.bestvalue > max_profit):
       #         print(taken)
                #满足则加入stack
                stack.append(v1)
                if v1.level == item_count-1:
                    max_profit = v1.curvalue #保留最大profit
                    taken = v1.path #保留最优解集
                  #  print(taken)
        value = max_profit
    
        #prepare the solution in the specified output format
        output_data = str(value) + ' ' + str(0) + '
    '
        output_data += ' '.join(map(str, taken))
        return output_data

    4.总结

    第一次做分支定界算法,总算解决了问题。第一遍写的实现问题百出,首先是bound的计算问题,当bound计算出错时,会发现树无法高效地剪枝(pruning)。导致程序一直运行。后来才发现是bound的计算错误。改正bug后,程序完成的时间都不到一分钟。

    The Safest Way to Get what you Want is to Try and Deserve What you Want.
  • 相关阅读:
    程序员的健康问题
    比特币解密
    浅谈比特币
    一款能帮助程序员发现问题的软件
    微软为什么总招人黑?
    写了一个bug,最后却变成了feature,要不要修呢?
    不管你信不信,反正我信了
    Excel工作表密码保护的破解
    pip笔记(译)
    super
  • 原文地址:https://www.cnblogs.com/Shinered/p/9711246.html
Copyright © 2011-2022 走看看