zoukankan      html  css  js  c++  java
  • Infinite Inversions(树状数组+离散化)

    思路及代码参考:https://blog.csdn.net/u014800748/article/details/45420085

    There is an infinite sequence consisting of all positive integers in the increasing order: p = {1, 2, 3, ...}. We performed n swap operations with this sequence. A swap(a, b) is an operation of swapping the elements of the sequence on positions aand b. Your task is to find the number of inversions in the resulting sequence, i.e. the number of such index pairs (i, j), that i < j and pi > pj.

    Input

    The first line contains a single integer n (1 ≤ n ≤ 105) — the number of swapoperations applied to the sequence.

    Each of the next n lines contains two integers ai and bi (1 ≤ ai, bi ≤ 109ai ≠ bi) — the arguments of the swap operation.

    Output

    Print a single integer — the number of inversions in the resulting sequence.

    Examples

    Input
    2
    4 2
    1 4
    Output
    4
    Input
    3
    1 6
    3 4
    2 5
    Output
    15

    Note

    In the first sample the sequence is being modified as follows: . It has 4 inversions formed by index pairs (1, 4), (2, 3), (2, 4) and (3, 4).

    代码:

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<stack>
    #include<set>
    #include<vector>
    #include<cmath>
    const int maxn=2e5+5;
    typedef long long ll;
    using namespace std;
    
    ll s[maxn],sum[maxn];
    int ss[maxn];
    int a[maxn],b[maxn],pos[maxn];
    int lowbit(int x)
    {
        return x&(-x);
    }
    int n;
    void update(int pos,int ad)
    {
        while(pos<=maxn)
        {
            s[pos]+=ad;
            pos+=lowbit(pos);
        }
    }
    ll getnum(int pos)
    {
        ll res=0;
        while(pos>0)
        {
            res+=s[pos];
            pos-=lowbit(pos);
        }
        return res;
    }
    int main()
    {
        int n;
        while (~scanf("%d", &n))
        {
            for (int i = 1; i <= n; i++)
            {
                scanf("%d%d", &a[i], &b[i]);
                ss[i] = a[i]; 
                ss[i + n] = b[i];
                pos[i] = i; 
                pos[i + n] = i + n;
            }
            sort(ss + 1, ss + 2 * n + 1);
            ss[0] = 0;
            int cnt = 0;
            for (int i = 1; i <= 2 * n;i++)
            if (i == 1 || ss[i] != ss[i - 1])
                ss[++cnt] = ss[i];
            sum[0] = 0;
            for (int i = 1; i <= cnt; i++)
                sum[i] = sum[i - 1] + ss[i] - ss[i - 1] - 1;
            for (int i = 1; i <= n; i++)
            {
                int aa = lower_bound(ss + 1, ss + cnt + 1, a[i]) - ss;
                int bb = lower_bound(ss + 1,ss + cnt + 1, b[i]) - ss;
                swap(pos[aa], pos[bb]);
            }
            memset(s, 0, sizeof(s));
            ll ans = 0;
            for (int i = cnt; i; i--)
            {
                ans += getnum(pos[i]);
                ans += abs(sum[i]-sum[pos[i]]);
                update(pos[i], 1);
            }
            printf("%lld
    ", ans);
        }
    
       return 0;
    }
  • 相关阅读:
    斯坦福机器学习视频之线性回归习题详解
    linuxc程序设计之passwd与shadow解析(转)
    DeepLearning之MLP解析
    The Linux Environment之getopt_long()
    插入排序
    堆排序
    归并排序
    快速排序
    CyclicBarrier与CountDownLatch的区别
    判断是否是平衡二叉树(左子树与右子树高度不大于1)
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/11312245.html
Copyright © 2011-2022 走看看