zoukankan      html  css  js  c++  java
  • Infinite Inversions(树状数组+离散化)

    思路及代码参考:https://blog.csdn.net/u014800748/article/details/45420085

    There is an infinite sequence consisting of all positive integers in the increasing order: p = {1, 2, 3, ...}. We performed n swap operations with this sequence. A swap(a, b) is an operation of swapping the elements of the sequence on positions aand b. Your task is to find the number of inversions in the resulting sequence, i.e. the number of such index pairs (i, j), that i < j and pi > pj.

    Input

    The first line contains a single integer n (1 ≤ n ≤ 105) — the number of swapoperations applied to the sequence.

    Each of the next n lines contains two integers ai and bi (1 ≤ ai, bi ≤ 109ai ≠ bi) — the arguments of the swap operation.

    Output

    Print a single integer — the number of inversions in the resulting sequence.

    Examples

    Input
    2
    4 2
    1 4
    Output
    4
    Input
    3
    1 6
    3 4
    2 5
    Output
    15

    Note

    In the first sample the sequence is being modified as follows: . It has 4 inversions formed by index pairs (1, 4), (2, 3), (2, 4) and (3, 4).

    代码:

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<stack>
    #include<set>
    #include<vector>
    #include<cmath>
    const int maxn=2e5+5;
    typedef long long ll;
    using namespace std;
    
    ll s[maxn],sum[maxn];
    int ss[maxn];
    int a[maxn],b[maxn],pos[maxn];
    int lowbit(int x)
    {
        return x&(-x);
    }
    int n;
    void update(int pos,int ad)
    {
        while(pos<=maxn)
        {
            s[pos]+=ad;
            pos+=lowbit(pos);
        }
    }
    ll getnum(int pos)
    {
        ll res=0;
        while(pos>0)
        {
            res+=s[pos];
            pos-=lowbit(pos);
        }
        return res;
    }
    int main()
    {
        int n;
        while (~scanf("%d", &n))
        {
            for (int i = 1; i <= n; i++)
            {
                scanf("%d%d", &a[i], &b[i]);
                ss[i] = a[i]; 
                ss[i + n] = b[i];
                pos[i] = i; 
                pos[i + n] = i + n;
            }
            sort(ss + 1, ss + 2 * n + 1);
            ss[0] = 0;
            int cnt = 0;
            for (int i = 1; i <= 2 * n;i++)
            if (i == 1 || ss[i] != ss[i - 1])
                ss[++cnt] = ss[i];
            sum[0] = 0;
            for (int i = 1; i <= cnt; i++)
                sum[i] = sum[i - 1] + ss[i] - ss[i - 1] - 1;
            for (int i = 1; i <= n; i++)
            {
                int aa = lower_bound(ss + 1, ss + cnt + 1, a[i]) - ss;
                int bb = lower_bound(ss + 1,ss + cnt + 1, b[i]) - ss;
                swap(pos[aa], pos[bb]);
            }
            memset(s, 0, sizeof(s));
            ll ans = 0;
            for (int i = cnt; i; i--)
            {
                ans += getnum(pos[i]);
                ans += abs(sum[i]-sum[pos[i]]);
                update(pos[i], 1);
            }
            printf("%lld
    ", ans);
        }
    
       return 0;
    }
  • 相关阅读:
    Spring的事务处理机制
    英特尔诺基亚联手研发Symbian系统的智能手机
    国际最新LOGO设计趋势总结
    Java学习笔记_身份验证机制
    用Validator检查你的表单
    软件企业:细节造就竞争力
    优化软件性能的方法
    【开发经验】Struts常见错误及原因分析
    CF547E Mike and Friends
    [ZJOI2015]诸神眷顾的幻想乡
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/11312245.html
Copyright © 2011-2022 走看看