zoukankan      html  css  js  c++  java
  • Infinite Inversions(树状数组+离散化)

    思路及代码参考:https://blog.csdn.net/u014800748/article/details/45420085

    There is an infinite sequence consisting of all positive integers in the increasing order: p = {1, 2, 3, ...}. We performed n swap operations with this sequence. A swap(a, b) is an operation of swapping the elements of the sequence on positions aand b. Your task is to find the number of inversions in the resulting sequence, i.e. the number of such index pairs (i, j), that i < j and pi > pj.

    Input

    The first line contains a single integer n (1 ≤ n ≤ 105) — the number of swapoperations applied to the sequence.

    Each of the next n lines contains two integers ai and bi (1 ≤ ai, bi ≤ 109ai ≠ bi) — the arguments of the swap operation.

    Output

    Print a single integer — the number of inversions in the resulting sequence.

    Examples

    Input
    2
    4 2
    1 4
    Output
    4
    Input
    3
    1 6
    3 4
    2 5
    Output
    15

    Note

    In the first sample the sequence is being modified as follows: . It has 4 inversions formed by index pairs (1, 4), (2, 3), (2, 4) and (3, 4).

    代码:

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<stack>
    #include<set>
    #include<vector>
    #include<cmath>
    const int maxn=2e5+5;
    typedef long long ll;
    using namespace std;
    
    ll s[maxn],sum[maxn];
    int ss[maxn];
    int a[maxn],b[maxn],pos[maxn];
    int lowbit(int x)
    {
        return x&(-x);
    }
    int n;
    void update(int pos,int ad)
    {
        while(pos<=maxn)
        {
            s[pos]+=ad;
            pos+=lowbit(pos);
        }
    }
    ll getnum(int pos)
    {
        ll res=0;
        while(pos>0)
        {
            res+=s[pos];
            pos-=lowbit(pos);
        }
        return res;
    }
    int main()
    {
        int n;
        while (~scanf("%d", &n))
        {
            for (int i = 1; i <= n; i++)
            {
                scanf("%d%d", &a[i], &b[i]);
                ss[i] = a[i]; 
                ss[i + n] = b[i];
                pos[i] = i; 
                pos[i + n] = i + n;
            }
            sort(ss + 1, ss + 2 * n + 1);
            ss[0] = 0;
            int cnt = 0;
            for (int i = 1; i <= 2 * n;i++)
            if (i == 1 || ss[i] != ss[i - 1])
                ss[++cnt] = ss[i];
            sum[0] = 0;
            for (int i = 1; i <= cnt; i++)
                sum[i] = sum[i - 1] + ss[i] - ss[i - 1] - 1;
            for (int i = 1; i <= n; i++)
            {
                int aa = lower_bound(ss + 1, ss + cnt + 1, a[i]) - ss;
                int bb = lower_bound(ss + 1,ss + cnt + 1, b[i]) - ss;
                swap(pos[aa], pos[bb]);
            }
            memset(s, 0, sizeof(s));
            ll ans = 0;
            for (int i = cnt; i; i--)
            {
                ans += getnum(pos[i]);
                ans += abs(sum[i]-sum[pos[i]]);
                update(pos[i], 1);
            }
            printf("%lld
    ", ans);
        }
    
       return 0;
    }
  • 相关阅读:
    Beta冲刺第三天
    Beta冲刺第二天
    C#编程(三十三)----------Array类
    ComputeColStats UDF中 近似算法的介绍(续)
    云计算技术第三堂课20210317
    云计算与信息安全第三堂课20210316
    操作系统第三堂课20210315
    ROSPlan教程
    机器学习第二堂课20210311
    云计算技术第二堂课20210310
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/11312245.html
Copyright © 2011-2022 走看看