zoukankan      html  css  js  c++  java
  • POJ 2387 Til the Cows Come Home (最短路 dijkstra)

    Til the Cows Come Home

    题目链接:

    http://acm.hust.edu.cn/vjudge/contest/66569#problem/A

    Description

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    • Line 1: Two integers: T and N

    • Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    • Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    题意:

    n个点m条边的无向图,求1到n的最短路径.

    题解:

    裸的最短路题;
    以下用朴素dijkstra和优先队列优化的dijkstra两种方法分别实现;
    注意:
    采用邻接数组来存储图时,必须判断重边(朴素法);

    代码:

    朴素dijkstra方法:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #define mid(a,b) ((a+b)>>1)
    #define LL long long
    #define maxn 1010
    #define inf 0x3f3f3f3f
    #define IN freopen("in.txt","r",stdin);
    using namespace std;
    
    int n,m;
    int value[maxn][maxn];
    int dis[maxn];
    int pre[maxn];
    bool vis[maxn];
    
    void dijkstra(int s) {
        memset(vis, 0, sizeof(vis));
        memset(pre, -1, sizeof(pre));
        for(int i=1; i<=n; i++) dis[i] = inf;
        dis[s] = 0;
    
        for(int i=1; i<=n; i++) {
            int p, mindis = inf;
            for(int j=1; j<=n; j++) {
                if(!vis[j] && dis[j]<mindis)
                    mindis = dis[p=j];
            }
            vis[p] = 1;
            for(int j=1; j<=n; j++) {
                //if(dis[p]+value[p][j] < dis[j]) dis[j] = dis[p] + value[p][j];
                if(dis[j] > dis[p]+value[p][j]) {
                    dis[j] = dis[p] + value[p][j];
                    pre[j] = p;
                }
            }
        }
    }
    
    int main(int argc, char const *argv[])
    {
        //IN;
    
        while(scanf("%d %d", &m,&n) != EOF)
        {
            for(int i=1; i<=n; i++)
                for(int j=1; j<=n; j++)
                    value[i][j] = inf;
            while(m--){
                int u,v,w; cin>>u>>v>>w;
                if(w < value[u][v]) value[u][v] = value[v][u] = w;
            }
    
            dijkstra(1);
    
            printf("%d
    ", dis[n]);
        }
    
        return 0;
    }
    
    

    优先队列优化的dijkstra方法:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #include<queue>
    #define mid(a,b) ((a+b)>>1)
    #define LL long long
    #define maxn 5010
    #define inf 0x3f3f3f3f
    #define IN freopen("in.txt","r",stdin);
    using namespace std;
    
    int n, m;
    typedef pair<int,int> pii;
    priority_queue<pii,vector<pii>,greater<pii> > q;
    bool vis[maxn];
    int edges, u[maxn], v[maxn], w[maxn];
    int first[maxn], next[maxn];
    int dis[maxn];
    int pre[maxn];
    
    void add_edge(int s, int t, int val) {
        u[edges] = s; v[edges] = t; w[edges] = val;
        next[edges] = first[s];
        first[s] = edges++;
    }
    
    void dijkstra(int s) {
        memset(pre, -1, sizeof(pre));
        memset(vis, 0, sizeof(vis));
        for(int i=1; i<=n; i++) dis[i]=inf; dis[s] = 0;
        while(!q.empty()) q.pop();
        q.push(make_pair(dis[s], s));
    
        while(!q.empty()) {
            pii cur = q.top(); q.pop();
            int p = cur.second;
            if(vis[p]) continue; vis[p] = 1;
            for(int e=first[p]; e!=-1; e=next[e]) if(dis[v[e]] > dis[p]+w[e]){
                dis[v[e]] = dis[p] + w[e];
                q.push(make_pair(dis[v[e]], v[e]));
                pre[v[e]] = p;
            }
        }
    }
    
    int main(int argc, char const *argv[])
    {
        //IN;
    
        while(scanf("%d %d", &m,&n) != EOF)
        {
            edges = 1;
            memset(first, -1, sizeof(first));
    
            for(int i=1; i<=m; i++){
                int u,v,w;  scanf("%d %d %d", &u,&v,&w);
                add_edge(u, v, w);
                add_edge(v, u, w);
            }
    
            dijkstra(1);
    
            printf("%d
    ", dis[n]);
    //        int cur = n;
    //        while(1) {
    //            printf("%d ", cur);
    //            if(cur == 1) break;
    //            cur = pre[cur];
    //        }
        }
    
        return 0;
    }
    
    
  • 相关阅读:
    JStack分析cpu消耗过高问题
    Machine Learning in Action – PCA和SVD
    Machine Learning in Action -- FP-growth
    Machine Learning in Action -- 树回归
    Machine Learning in Action -- 回归
    Kafka 0.8 配置参数解析
    统计学习方法笔记 -- 隐马尔可夫模型
    Machine Learning in Action -- AdaBoost
    统计学习方法笔记 -- Boosting方法
    Andrew Ng机器学习公开课笔记–Reinforcement Learning and Control
  • 原文地址:https://www.cnblogs.com/Sunshine-tcf/p/5693654.html
Copyright © 2011-2022 走看看