1085. Perfect Sequence (25)
Given a sequence of positive integers and another positive integer p. The sequence is said to be a "perfect sequence" if M <= m * p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (<= 105) is the number of integers in the sequence, and p (<= 109) is the parameter. In the second line there are N positive integers, each is no greater than 109.
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input:10 8 2 3 20 4 5 1 6 7 8 9Sample Output:
8
解:一次遍历,从i=0开始遍历,找大于container[i]*p的第一次出现的位置,如果间距大于当前值,则更新长度,当n-i的值小于当前长度的时候,程序终止,因为再也不可能得到更大的距离,最终得到最长间距。
代码:
#include<iostream> #include<cstdlib> #include<cstdio> #include<algorithm> #include<cstring> #include<vector> using namespace std; typedef long long ll; ll container[1000000]; int main() { int n,p; scanf("%d%d",&n,&p); ll num; for(int i=0;i<n;i++) { scanf("%lld",&num); container[i]=num; } sort(container,container+n); // for(q=container.begin();q!=container.end();q++) // { // cout<<*q<<" "<<endl; // } int tob=0,mm=0; for(int i=0;i<n;i++) { int tmp = upper_bound(container+i,container+n, container[i]*p) - (container+i); if(tmp>tob) tob=tmp; if(n-i<tob) break; } printf("%d ",tob); return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。