zoukankan      html  css  js  c++  java
  • D. Longest Subsequence

    D. Longest Subsequence
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given array a with n elements and the number m. Consider some subsequence of a and the value of least common multiple (LCM) of its elements. Denote LCM as l. Find any longest subsequence of a with the value l ≤ m.

    A subsequence of a is an array we can get by erasing some elements of a. It is allowed to erase zero or all elements.

    The LCM of an empty array equals 1.

    Input

    The first line contains two integers n and m (1 ≤ n, m ≤ 106) — the size of the array a and the parameter from the problem statement.

    The second line contains n integers ai (1 ≤ ai ≤ 109) — the elements of a.

    Output

    In the first line print two integers l and kmax (1 ≤ l ≤ m, 0 ≤ kmax ≤ n) — the value of LCM and the number of elements in optimal subsequence.

    In the second line print kmax integers — the positions of the elements from the optimal subsequence in the ascending order.

    Note that you can find and print any subsequence with the maximum length.

    Examples
    Input
    7 8
    6 2 9 2 7 2 3
    
    Output
    6 5
    1 2 4 6 7
    
    Input
    6 4
    2 2 2 3 3 3
    
    Output
    2 3
    

    1 2 3

    /*题目大意:给定n大小的数组a,求数组a的最长子序列的最小公倍数不超过m。要求输出其满足要求的任意子序列
     *算法分析:先将小于等于m的数择出来,然后从后向前筛 
    */
    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long int llint;
    const int maxn = 1e6 + 100;
    llint a[maxn], b[maxn];
    
    int main() {
    	memset(a, 0, sizeof(a));
    	memset(b, 0, sizeof(b));
    	llint n, m, flag = 0;
    	scanf("%I64d%I64d",&n, &m);
    	for (llint i = 0; i<n; i++) {
    		scanf("%I64d",&a[i]);
    		if (a[i] <= m) {
    			b[a[i]] ++ ;
    			flag = 1;
    		}
    	}
    	if (!flag)	cout << "1 0" << endl;
    	else {
    		for (llint i = m; i>=1; i--) {
    			for (llint j = 2*i; j<=m; j+=i) {
    				b[j] += b[i];
    			}
    		}
    		llint max = 0, lcm = 0;
    		for (llint i = 1; i<=m; i++) {
    			if (b[i] > max) {
    				max = b[i];
    				lcm = i;
    			}
    		}
    		cout << lcm << " " << max << endl;
    		for (llint i = 0; i<n; i++) {
    			if (lcm%a[i] == 0)	cout << i+1 << " " ;
    		}
    		cout << endl;
    	}
    	return 0;
    }
    
    


  • 相关阅读:
    Oracle数据库容灾备份技术探讨
    asp.net 生成、解析条形码和二维码
    推荐一些C#相关的网站、资源和书籍
    内部集群的 DNS server 搭建
    Nginx 负载均衡
    webpack技巧:动态批量加载文件
    Mock.js使用
    @vue/cli 项目编译重复命中缓存问题解析
    用React hooks实现TDD
    从 React 切换到 Vue.js
  • 原文地址:https://www.cnblogs.com/Tovi/p/6194804.html
Copyright © 2011-2022 走看看