zoukankan      html  css  js  c++  java
  • 关于LSTM的输入和训练过程的理解

    1.训练的话一般一批一批训练,即让batch_size 个样本同时训练;

    2.每个样本又包含从该样本往后的连续seq_len个样本(如seq_len=15),seq_len也就是LSTM中cell的个数;

    3.每个样本又包含inpute_dim个维度的特征(如input_dim=7)

    因此,输入层的输入数据通常先要reshape:

    x= np.reshape(x, (batch_size , seq_len, input_dim))

    (友情提示:每个cell共享参数!!!)

    举个例子:

    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    import numpy as np
    #在这里做数据加载,还是使用那个MNIST的数据,以one_hot的方式加载数据,记得目录可以改成之前已经下载完成的目录
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    
    '''
    MNIST的数据是一个28*28的图像,这里RNN测试,把他看成一行行的序列(28维度(28长的sequence)*28行)
    '''
    
    # RNN学习时使用的参数
    learning_rate = 0.001
    training_iters = 100000
    batch_size = 128
    display_step = 10
    
    # 神经网络的参数
    n_input = 28  # 输入层的n
    n_steps = 28  # 28长度
    n_hidden = 128  # 隐含层的特征数
    n_classes = 10  # 输出的数量,因为是分类问题,0~9个数字,这里一共有10个
    
    # 构建tensorflow的输入X的placeholder
    x = tf.placeholder("float", [None, n_steps, n_input])
    # tensorflow里的LSTM需要两倍于n_hidden的长度的状态,一个state和一个cell
    # Tensorflow LSTM cell requires 2x n_hidden length (state & cell)
    istate = tf.placeholder("float", [None, 2 * n_hidden])
    # 输出Y
    y = tf.placeholder("float", [None, n_classes])
    
    # 随机初始化每一层的权值和偏置
    weights = {
        'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])),  # Hidden layer weights
        'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
    }
    biases = {
        'hidden': tf.Variable(tf.random_normal([n_hidden])),
        'out': tf.Variable(tf.random_normal([n_classes]))
    }
    
    '''
    构建RNN
    '''
    def RNN(_X, _istate, _weights, _biases):
        # 规整输入的数据
        _X = tf.transpose(_X, [1, 0, 2])  # permute n_steps and batch_size
    
        _X = tf.reshape(_X, [-1, n_input])  # (n_steps*batch_size, n_input)
        # 输入层到隐含层,第一次是直接运算
        _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
        # 之后使用LSTM
        lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
        # 28长度的sequence,所以是需要分解位28次
        _X = tf.split(0, n_steps, _X)  # n_steps * (batch_size, n_hidden)
        # 开始跑RNN那部分
        outputs, states = tf.nn.rnn(lstm_cell, _X, initial_state=_istate)
    
        # 输出层
        return tf.matmul(outputs[-1], _weights['out']) + _biases['out']
    
    
    pred = RNN(x, istate, weights, biases)
    
    # 定义损失和优化方法,其中算是为softmax交叉熵,优化方法为Adam
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))  # Softmax loss
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)  # Adam Optimizer
    
    # 进行模型的评估,argmax是取出取值最大的那一个的标签作为输出
    correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    # 初始化
    init = tf.initialize_all_variables()
    
    # 开始运行
    with tf.Session() as sess:
        sess.run(init)
        step = 1
        # 持续迭代
        while step * batch_size < training_iters:
            # 随机抽出这一次迭代训练时用的数据
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            # 对数据进行处理,使得其符合输入
            batch_xs = batch_xs.reshape((batch_size, n_steps, n_input))
            # 迭代
            sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
                                           istate: np.zeros((batch_size, 2 * n_hidden))})
            # 在特定的迭代回合进行数据的输出
            if step % display_step == 0:
                # Calculate batch accuracy
                acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys,
                                                    istate: np.zeros((batch_size, 2 * n_hidden))})
                # Calculate batch loss
                loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys,
                                                 istate: np.zeros((batch_size, 2 * n_hidden))})
                print "Iter " + str(step * batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + 
                      ", Training Accuracy= " + "{:.5f}".format(acc)
            step += 1
        print "Optimization Finished!"
        # 载入测试集进行测试
        test_len = 256
        test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
        test_label = mnist.test.labels[:test_len]
        print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label,
                                                                 istate: np.zeros((test_len, 2 * n_hidden))}
  • 相关阅读:
    Asp.Net MVC 体验 1
    myisamchk命令进行崩溃恢复Myisam数据表
    nginx 全局变量
    centos开机启动项设置命令:chkconfig
    redis info 参数说明
    PHP中Imagick的使用
    查看当前nginx、mysql的连接数
    wget参数及用法
    编辑器与IDE
    广州求职,工作经验>5.期待伯乐
  • 原文地址:https://www.cnblogs.com/USTC-ZCC/p/11171209.html
Copyright © 2011-2022 走看看