zoukankan      html  css  js  c++  java
  • [POJ2985]The k-th Largest Group

    Problem

    刚开始,每个数一个块。
    有两个操作:0 x y 合并x,y所在的块
    1 x 查询第x大的块

    Solution

    用并查集合并时,把原来的大小删去,加上两个块的大小和。

    Notice

    非旋转Treap一直错。。。

    Code

    旋转Treap(非旋转Treap总是TLE...)

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define sqz main
    #define ll long long
    #define reg register int
    #define rep(i, a, b) for (reg i = a; i <= b; i++)
    #define per(i, a, b) for (reg i = a; i >= b; i--)
    #define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
    const int INF = 1e9, N = 400000;
    const double eps = 1e-6, phi = acos(-1.0);
    ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
    ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
    void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
    int fa[N + 5], T[N + 5], point = 0, root;
    int Find(int x)
    {
        if (fa[x] != x) fa[x] = Find(fa[x]);
        return fa[x];
    }
    struct node
    {
    	int Val[N + 5], Level[N + 5], Size[N + 5], Son[2][N + 5], Num[N + 5];
    	inline void up(int u)
    	{
    		Size[u] = Size[Son[0][u]] + Size[Son[1][u]] + Num[u];
    	}
    	inline void Newnode(int &u, int v)
    	{
    		u = ++point;
    		Level[u] = rand(), Val[u] = v;
    		Size[u] = Num[u] = 1, Son[0][u] = Son[1][u] = 0;
    	}
    	inline void Lturn(int &x)
    	{
    		int y = Son[1][x]; Son[1][x] = Son[0][y], Son[0][y] = x;
    		Size[y] = Size[x]; up(x); x = y;
    	}
    	inline void Rturn(int &x)
    	{
    		int y = Son[0][x]; Son[0][x] = Son[1][y], Son[1][y] = x;
    		Size[y] = Size[x]; up(x); x = y;
    	}
    
    	void Insert(int &u, int t)
    	{
    		if (u == 0)
    		{
    			Newnode(u, t);
    			return;
    		}
    		Size[u]++;
    		if (t == Val[u]) Num[u]++;
    		else if (t > Val[u])
    		{
    			Insert(Son[0][u], t);
    			if (Level[Son[0][u]] < Level[u]) Rturn(u);
    		}
    		else if (t < Val[u])
    		{
    			Insert(Son[1][u], t);
    			if (Level[Son[1][u]] < Level[u]) Lturn(u);
    		}
    	}
    	void Delete(int &u, int t)
    	{
    		if (!u) return;
    		if (Val[u] == t)
    		{
    			if (Num[u] > 1)
    			{
    				Num[u]--, Size[u]--;
    				return;
    			}
    			if (Son[0][u] * Son[1][u] == 0) u = Son[0][u] + Son[1][u];
    			else if (Level[Son[0][u]] < Level[Son[1][u]]) Rturn(u), Delete(u, t);
    			else Lturn(u), Delete(u, t);
    		}
    		else if (t > Val[u]) Size[u]--, Delete(Son[0][u], t);
    		else Size[u]--, Delete(Son[1][u], t);
    	}
    
    	int Find_num(int u, int t)
    	{
    		if (!u) return 0;
    		if (t <= Size[Son[0][u]]) return Find_num(Son[0][u], t);
    		else if (t <= Size[Son[0][u]] + Num[u]) return u;
    		else return Find_num(Son[1][u], t - Size[Son[0][u]] - Num[u]);
    	}
    }Treap;
    int sqz()
    {
        int n = read(), m = read();
        rep(i, 1, n) fa[i] = i, Treap.Insert(root, 1), T[i] = 1;
        while (m--)
        {
            int op = read();
            if (!op)
            {
                int x = Find(read()), y = Find(read());
                if (x != y)
                {
                    Treap.Delete(root, T[x]), Treap.Delete(root, T[y]);
                    fa[x] = y;
                    T[y] += T[x];
                    Treap.Insert(root, T[y]);
                }
            }
            else
            {
                int x = read();
                printf("%d
    ", Treap.Val[Treap.Find_num(root, x)]);
            }
        }
    }
    
  • 相关阅读:
    66. 缓存字节流
    65. 练习(拷贝图片--边读边写)
    64. 输出字节流(FileOutputStream)
    63. (FileInputStream)输入字节流
    62. File类常用方法
    61. File类
    60. 枚举
    快速排序
    归并排序
    初级排序算法
  • 原文地址:https://www.cnblogs.com/WizardCowboy/p/7643592.html
Copyright © 2011-2022 走看看