题目传送门:https://codeforces.com/problemset/problem/558/E
题目大意:
给定一串长度为(n)的小写字母串,有(m)个操作,每次操作将区间([l_i,r_i])排序成非升((k_i=0))或非降((k_i=1))序列,输出问(m)次操作后的字符串
开26个线段树,每次将([l_i,r_i])中所有的字符统计出来,然后再暴力按顺序插回去(区间覆盖)
每次询问是(O(26log^2n))的,插入也是(O(26log^2n))的,共计(m)组操作
最后询问的时间复杂度为(O(26nlog n))
故总时间复杂度为(O(26mlog^2n+26nlog n))(反正炸不了)
/*program from Wolfycz*/
#include<map>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define Fi first
#define Se second
#define ll_inf 1e18
#define MK make_pair
#define sqr(x) ((x)*(x))
#define pii pair<int,int>
#define int_inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
template<typename T>inline T frd(T x){
int f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
template<typename T>inline T read(T x){
int f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=1e5,K=26;
char s[N+10];
struct S1{
#define ls (p<<1)
#define rs (p<<1|1)
int Tree[(N<<2)+10],Cov[(N<<2)+10];
void update(int p){Tree[p]=Tree[ls]+Tree[rs];}
void Add_Cov(int p,int l,int r,int v){
Cov[p]=v;
Tree[p]=(r-l+1)*v;
}
void pushdown(int p,int l,int r){
if (!~Cov[p]) return;
int mid=(l+r)>>1;
Add_Cov(ls,l,mid,Cov[p]);
Add_Cov(rs,mid+1,r,Cov[p]);
Cov[p]=-1;
}
void Modify(int p,int l,int r,int L,int R,int v){
if (L<=l&&r<=R){
Add_Cov(p,l,r,v);
return;
}
pushdown(p,l,r);
int mid=(l+r)>>1;
if (L<=mid) Modify(ls,l,mid,L,R,v);
if (R>mid) Modify(rs,mid+1,r,L,R,v);
update(p);
}
int Query(int p,int l,int r,int L,int R){
if (L<=l&&r<=R) return Tree[p];
pushdown(p,l,r);
int mid=(l+r)>>1,res=0;
if (L<=mid) res+=Query(ls,l,mid,L,R);
if (R>mid) res+=Query(rs,mid+1,r,L,R);
return res;
}
#undef ls
#undef rs
}ST[K];//Segment Tree
int Cnt[K];
int main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
int n=read(0),m=read(0);
scanf("%s",s+1);
for (int i=1;i<=n;i++) ST[s[i]-'a'].Modify(1,1,n,i,i,1);
for (int i=1;i<=m;i++){
int l=read(0),r=read(0),type=read(0);
memset(Cnt,0,sizeof(Cnt));
for (int k=0;k<K;k++){
Cnt[k]+=ST[k].Query(1,1,n,l,r);
ST[k].Modify(1,1,n,l,r,0);
}
int Last=l;
if (type){ // non - decreasing
for (int k=0;k<K;k++){
if (!Cnt[k]) continue;
ST[k].Modify(1,1,n,Last,Last+Cnt[k]-1,1);
Last+=Cnt[k];
}
}else{
for (int k=K-1;~k;k--){
if (!Cnt[k]) continue;
ST[k].Modify(1,1,n,Last,Last+Cnt[k]-1,1);
Last+=Cnt[k];
}
}
}
for (int i=1;i<=n;i++)
for (int k=0;k<K;k++)
if (ST[k].Query(1,1,n,i,i))
printf("%c",k+'a');
return 0;
}