zoukankan      html  css  js  c++  java
  • UESTC_Can You Help God Wu CDOJ 582

    There is a boy named God Wu in UESTC ACM team. One day he is asked to finish a task. The task is that he has to paint a wall as the given pattern. The wall can be represented as a 2×n grid and each grid will be painted only one color. You know God Wu is a God, so he has a brush which could paint a rectangular area of the wall at a single step. As we all know, the paint could be overlap and the newly painted color will replace the older one.

    God Wu is so lazy that he always want to finish something in the least steps. At first, the wall was not painted until God Wu paint some colors on it. For a given pattern of the wall, God Wu has to find out the minimum possible number of painting steps to make the wall the same as the given pattern.

    Input

    In the input file, the first line contains the number of test cases.

    For each test case, the first contains only one integer n(1n8) indicating the length of the wall.

    Then follows two lines, denoting the expected pattern of the wall. Every grid is painted by a color which is represented by a single capital letter. You can see the Input Sample for more details.

    Output

    For each test case, output only one integer denoting the minimum number of steps.

    Sample input and output

    Sample InputSample Output
    3
    3
    ABA
    CBC
    3
    BAA
    CCB
    3
    BBB
    BAB
    Case #1: 3
    Case #2: 3
    Case #3: 2

    Source

    UESTC Training for Search Algorithm
     
    解题报告
    暴力枚举涂法,注意二进制的优先级。。TLE
    改进:
    我们设计一个A*算法,g(x) = 目前的涂色次数 , h(x) = 当前的不对颜色种类.
    很容易得到 f(x) = g(x) + h(x)是满足单调性的
    证明:
     设在某步时g(n) = x,h(n) = y;
     在下一步时必然有 g(n') = x + 1 , 且h(n') = y or y-1, 因为你每次只能消除一种颜色,甚至于等于没消
     故 c(n,n') + h(n') - h(n) = 1 + (y or y-1) -y -> min = 0 >=0
     满足相容性,得证
     
      1 #include <iostream>
      2 #include <cstring>
      3 #include <cstdio>
      4 #include <algorithm>
      5 #include <queue>
      6 using namespace std;
      7 
      8 char g[18];
      9 int  len,all;
     10 bool vis[65537];
     11 int  target;
     12 int  caculate[17] = {1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536};
     13 typedef struct status
     14 {
     15 int st,step,h;
     16 friend bool operator < (status a,status b)
     17 {
     18  if (a.step + a.h < b.step + b.h)
     19   return false;
     20  if (a.step + a.h == b.step + b.h && a.step  < b.step)
     21   return false;
     22  return true;
     23 }
     24      
     25 };
     26 
     27 priority_queue<status>q;
     28 
     29 int A(status &x)
     30 {
     31  bool ll[26];
     32  int result = 0;
     33  memset(ll,false,sizeof(ll));
     34  for(int i = 0; i < all;++i)
     35   if ( (!(x.st & (1 << i))) && !ll[g[i]-'A'])
     36    {
     37        result ++;
     38        ll[g[i]-'A'] = true;
     39    }
     40 return result;
     41 }
     42 
     43 
     44 int bfs()
     45 {
     46 status start;
     47 start.step = 0,start.st = 0;
     48 start.h = A(start);
     49 q.push(start);
     50 vis[0] = true;
     51 while(!q.empty())
     52 {
     53  status ss = q.top();q.pop();
     54  if (ss.st == target) return ss.step;
     55  for(int i = 0 ; i <len;++i)
     56   for(int j = 1;j <= len-i;++j)
     57    {
     58         char id;
     59         for(int h = 0;h< j;++h)
     60          {
     61         id = g[i+h];
     62         int t = ss.st;
     63         for(int v = 0 ; v < j ;++ v)
     64          if(g[i+v] != id)
     65           t &= ~(1 << (i+v));
     66          else
     67           t |=  (1 << (i+v));
     68         if (!vis[t])
     69          {
     70              status ns;
     71              ns.step = ss.step + 1;
     72              ns.st = t;
     73              ns.h = A(ns);
     74              q.push(ns);
     75              vis[t] = true;
     76          }
     77       }
     78       
     79      for(int h = 0;h< j;++h)
     80          {
     81         id = g[i+h+len];
     82         int t = ss.st;
     83         for(int v = 0 ; v < j ;++ v)
     84          if(g[i+v+len] != id)
     85           t &= ~(1 << (i+v+len));
     86          else
     87           t |=  (1 << (i+v+len));
     88         if (!vis[t])
     89          {
     90              status ns;
     91              ns.step = ss.step + 1;
     92              ns.h = A(ns);
     93              ns.st = t;
     94              q.push(ns);
     95              vis[t] = true;
     96          }
     97       }
     98       
     99       
    100      
    101      for(int h = 0 ; h < 2*j;++ h)
    102       {
    103           if (h >= j)
    104            id = g[h-j+i+len];
    105         else
    106          id = g[i+h];
    107         int t = ss.st;
    108         
    109         for(int v = 0 ; v < j ; ++ v)
    110          {
    111              if (g[i+v] != id)
    112               t &= ~(1 << (i+v));
    113                else
    114                 t |= (1 << (i+v));
    115                
    116                if (g[i+v+len] != id)
    117                 t &= ~(1 << (i+v+len));
    118             else
    119              t |= (1 << (i+v+len));
    120              
    121          }
    122          
    123          if (!vis[t])
    124           {
    125               vis[t] = true;
    126               status ns;
    127               ns.h = A(ns);
    128               ns.step  = ss.step + 1;
    129               ns.st = t;
    130               q.push(ns);
    131           }
    132         } 
    133       
    134    }
    135  
    136 }
    137 return -1;    
    138 }
    139 
    140 
    141 int main(int argc, char * argv[])
    142 {
    143  int T,T2=1;
    144  memset(g,0,sizeof(g));
    145  scanf("%d",&T);
    146  while (T--)
    147   {
    148       while(!q.empty())
    149        q.pop();
    150       scanf("%d",&len);
    151       scanf("%s%s",g,&g[len]);
    152       memset(vis,false,sizeof(vis));
    153       target = caculate[len*2]-1;
    154       all = len*2;
    155       cout << "Case #" << T2++ << ": " << bfs() << endl;
    156   }
    157  return 0;    
    158 }
    No Pain , No Gain.
  • 相关阅读:
    数据分析的广阔前景
    验证驱动的调用者
    重构:改善既有代码的设计 精彩书评一
    谁说菜鸟不会数据分析
    编写安全的驱动程序之输入输出检查
    数据分析师的基本素质
    重构:改善既有代码的设计 精彩书评二
    Java编程思想(第4版)(评注版)
    第四章(2)Libgdx手工项目设置
    第四章(1)Libgdx项目安装、运行和调试
  • 原文地址:https://www.cnblogs.com/Xiper/p/4455122.html
Copyright © 2011-2022 走看看