zoukankan      html  css  js  c++  java
  • CodeForces-682C(DFS,树,思维)

    链接:

    https://vjudge.net/problem/CodeForces-682C

    题意:

    Alyona decided to go on a diet and went to the forest to get some apples. There she unexpectedly found a magic rooted tree with root in the vertex 1, every vertex and every edge of which has a number written on.

    The girl noticed that some of the tree's vertices are sad, so she decided to play with them. Let's call vertex v sad if there is a vertex u in subtree of vertex v such that dist(v, u) > au, where au is the number written on vertex u, dist(v, u) is the sum of the numbers written on the edges on the path from v to u.

    Leaves of a tree are vertices connected to a single vertex by a single edge, but the root of a tree is a leaf if and only if the tree consists of a single vertex — root.

    Thus Alyona decided to remove some of tree leaves until there will be no any sad vertex left in the tree. What is the minimum number of leaves Alyona needs to remove?

    思路:

    给了一个有根树,那就建个有向图就行了,第一遍Dfs找到每个要删除的点,同时计算每个点的子节点有多少.
    第二遍dfs把遇到的第一个要删的点,删除,同时他的子节点也要删除,因为可能出现根节点删除,子节点不删的情况.
    所以直接统计根加子节点的数目一并删除.找满足删的点的时候要考虑是到他的任一祖先都满足,所以用一点dp的思想,
    dis(u) 为到u点的最长值,dis(u) = max(dis(v)+w, w),不断更新即可.

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    //#include <memory.h>
    #include <queue>
    #include <set>
    #include <map>
    #include <algorithm>
    #include <math.h>
    #include <stack>
    #include <string>
    #include <assert.h>
    #define MINF 0x3f3f3f3f
    using namespace std;
    typedef long long LL;
    
    const int MAXN = 1e5+10;
    struct Node
    {
        int to;
        LL w;
    };
    LL Value[MAXN];
    vector<Node> G[MAXN];
    int Vis[MAXN], Sum[MAXN];
    int n, cnt = 0;
    
    int Dfs(int x, LL v)
    {
        int res = 1;
        for (int i = 0;i < G[x].size();i++)
        {
            int to = G[x][i].to;
            res += Dfs(to, max(v+G[x][i].w, G[x][i].w));
        }
        if (v > Value[x])
            Vis[x] = 1;
        Sum[x] = res;
        return res;
    }
    
    void Dfs2(int x)
    {
        for (int i = 0;i < G[x].size();i++)
        {
            if (Vis[G[x][i].to])
                cnt += Sum[G[x][i].to];
            else
                Dfs2(G[x][i].to);
        }
    }
    
    int main()
    {
        ios::sync_with_stdio(false);
        cin.tie(0);
        int v, w;
        cin >> n;
        for (int i = 1;i <= n;i++)
            cin >> Value[i];
        for (int i = 1;i < n;i++)
        {
            cin >> v >> w;
            G[v].push_back(Node{i+1, w});
        }
        Sum[1] = Dfs(1, 0);
        Dfs2(1);
        cout << cnt << endl;
    
        return 0;
    }
    
  • 相关阅读:
    命令行参数解析
    业务
    从0开始架构二
    从0开始架构读书笔记
    增加ldl
    工具论
    go的web框架的context回调的原理
    id生成器雪花算法和雪花算法的sony实现
    软件架构师应该知道的97件事(六)
    进程通信简介
  • 原文地址:https://www.cnblogs.com/YDDDD/p/11363040.html
Copyright © 2011-2022 走看看