zoukankan      html  css  js  c++  java
  • 小X的矩阵

    题目描述

    小X最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G。对于N*N的矩阵A,A的所有元素均为0或1,则G(A)等于所有A[i][j]*A[j][i]的和对2取余之后的结果。举一个例子:
    在这里插入图片描述

    对于上图这个3 * 3矩阵A,G(A)=(1 * 1 + 1 * 0 + 1 * 1 + 0 * 1 + 1 * 1 + 1 * 0 + 1 * 1 + 0 * 1 + 0 * 0) mod 2=0
    当然询问一个矩阵的G值实在是太简单了。小X在给出一个N*N矩阵的同时将给你Q个操作,操作描述如下:

    操作1:形如一个整数1和一个整数x,表示将第x行的元素全部“翻转”。

    操作2:形如一个整数2和一个整数x,表示将第x列的元素全部“翻转”。

    操作3:形如一个整数3,表示询问当前矩阵的特征值G。
    “翻转”的定义为将1变成0,将0变成1。

    输入

    第1行:两个正整数N,Q。 N表示矩阵的行数(列数),Q表示询问的个数。
    接下来N行:一个N*N的矩阵A,0<=A[i][j]<=1。
    接下来Q行:Q个操作。
    输出

    一行若干个数,中间没有空格,分别表示每个操作的结果(操作1和操作2不需要输出)。

    输入样例
    3 12
    1 1 1
    0 1 1
    1 0 0
    3
    2 3
    3
    2 2
    2 2
    1 3
    3
    3
    1 2
    2 1
    1 1
    3

    输出样例
    01001

    说明
    30% N<=100, Q<=10^5
    100% N<=1,000, Q <=5*10^5
    .
    .
    .
    .
    .
    分析
    我们可以发现:a[i][j]*a[j][i]+a[j][i]*a[i][j] 对于答案毫无意义
    因此,答案为矩阵的 右上至左下 的对角线的G值
    对于一个操作,无论它是在哪一行哪一列,它都会对线上的一个值(只有一个)进行影响,那么每次只需将答案取反即可。
    .
    .
    .
    .
    .
    程序:

    #include<iostream>
    #include<cstdio>
    using namespace std;
    
    inline int read()
    {
    	int s=0,w=1;
       	char ch=getchar();
       	while (ch<'0'||ch>'9')
       	{
    		if (ch=='-') w=-1;
    		ch=getchar();
    	}
       	while (ch>='0'&&ch<='9') 
    	{
       		s=s*10+ch-'0';
    		ch=getchar();
       	}
       	return s*w;
    }
    
    int main()
    {
    	int n,q;
    	bool ans=0;
    	n=read();
    	q=read();
    	for (int i=1;i<=n;i++)
    		for (int j=1;j<=n;j++)
    		{
    			int x;
    			x=read();
    			if (i==j) ans=(ans+x)%2;
    		}
    	for (int i=1;i<=q;i++)
    	{
    		int x=read();
    		if (x==3) printf("%d",ans); else
    		{
    			int y=read();
    			ans=ans^1;
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    关于Linux内核版本
    什么是操作系统?
    进程三种基本状态
    Repo实践指南
    在TortoiseSVN/TortoiseGit中使用BeyondCompare进行差异对比
    Redis安装
    Outlook配置163邮箱
    Nginx安装
    MySQL字符串操作函数
    Java各种反射性能对比
  • 原文地址:https://www.cnblogs.com/YYC-0304/p/10292841.html
Copyright © 2011-2022 走看看