zoukankan      html  css  js  c++  java
  • POJ 1061.青蛙的约会-扩展欧几里得

    扩展欧几里得算法

    是欧几里得算法(又叫辗转相除法)的扩展。除了计算a、b两个整数的最大公约数,此算法还能找到整数x、y(其中一个很可能是负数)。通常谈到最大公因子, 我们都会提到一个非常基本的事实: 给予二整数 a 与 b, 必存在有整数 x 与 y 使得ax + by = gcd(a,b)。有两个数a,b,对它们进行辗转相除法,可得它们的最大公约数——这是众所周知的。然后,收集辗转相除法中产生的式子,倒回去,可以得到ax+by=gcd(a,b)的整数解。       

                                                                                  -----百度百科

    POJ1061 青蛙的约会

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
    我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
    Input

    输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

    Output

    输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

    Sample Input

    1 2 3 4 5

    Sample Output

    4

    由题意为求解一个不定方程:(n-m)*t+k*l=x-y;

    代码:

    #include<stdio.h>
    using namespace std;
    typedef long long ll;
    ll gcd(ll a,ll b){
        if(b==0)
            return a;
        else
            return gcd(b,a%b);
    }
    ll exgcd(ll a,ll b,ll &x,ll &y){
        if(b==0){
            x=1;y=0;
            return a;
        }
        ll r=exgcd(b,a%b,x,y);
        ll t=y;
        y=x-(a/b)*y;
        x=t;
        return r;
    }
    int main(){
        ll x,y,m,n,l,d;
        ll a,b,c,r,t1,t2;     //(n-m)*t+k*l=x-y;
        while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l)){
            a=n-m;
            b=l;
            r=x-y;
            c=gcd(a,b);
            if(r%c!=0){
                printf("Impossible
    ");
                continue;
            }
            else
              d=exgcd(a,b,t1,t2);
            t1=r*t1/d;
            t1=(t1%(b/d)+(b/d))%(b/d);
            printf("%lld
    ",t1);
        }
            return 0;
    }

    首先是介绍欧几里得算法(辗转相除法)求最大公约数:

    Acm之家这个网站上也有详解扩展欧几里得算法。

    特解为gcd(a,0)=a;

    代码:

    int gcd(int a,int b){
        if(b==0) return a;
        else return gcd(b,a%b);
    }

    gcd(a,b)=gcd(b,a%b);
    a,b ==  b,a%b;

    假设:最大公约数为d;因为a%d=0;b%d=0;所以a=k*b+r;a%b==r;所以r=a-k*b;r%d=0; 

    r=a mod b;r=a-(a/b)*b; -->k=a/b;                                //这里想错了。。。a/b是整除,不是除法,为取整。

    r=a-a/b*b=a%b;

    扩展欧几里得是在求gcd的过程中,顺带着推出来x和y的值。

    扩展欧几里得求的是a*x0+b*y0=gcd(a,b)这个方程的解。

    但是要求的是a*x+b*y=r这个解。

    以下为两种理解:

    1.

    x=r*x0/gcd;

    ll gcd=exgcd(a,b,x,y);这个求出来的是gcd(a,b);

    因为要求的是a*x+b*y=r。

    a*x0+b*y0=gcd(a,b) --->a*x0+b*y0=gcd(a,b)/r*r;

    把gcd(a,b)/r移到左边,为a*x0/gcd(a,b)*r+b*y0/gcd(a,b)*r=r。

    所以把a*x0+b*y0=gcd(a,b)求到的解,通过x=x0/gcd(a,b)*r,得到a*x+b*y=r的解。

    因为要求的是最小解a*x+b*y=r;

    a*(x+k*b)+b*(y-k*a)=r那么x的解满足x=x0+k*b这个形式。但是这个不是最简的,因为a,b有公约数的。

    最小正整数解x=(x%gcd+gcd)%gcd; a*(x+k*b/gcd(a,b))+b*(y-k*a/gcd(a,b))=r这个是最简的。

    2.

    因为exgcd求出来的是gcd的解,所以要求r对应的解,就看r是gcd的多少倍直接x和y的值乘以相应的倍数就可以。

    a*x0+b*y0=gcd(a,b);

    r=k*gcd(a,b),所以直接结果乘k就可以了。

    老是错,最后知道哪里错了,把continue忘了。。。

    bb完了,溜了。

  • 相关阅读:
    10个最常见的 HTML5 面试题及答案
    YII 的源码分析(-)
    架构师速成5.2-如何掌握综合性技能 分类: 架构师速成 2015-06-30 11:18 405人阅读 评论(0) 收藏
    架构师速成5.1-小学gtd进阶 分类: 架构师速成 2015-06-26 21:17 313人阅读 评论(0) 收藏
    架构师速成4.3-幼儿园要学会查找资料 分类: 架构师速成 2015-06-25 09:08 409人阅读 评论(0) 收藏
    架构师速成4.2-幼儿园要学会如何高效学习 分类: 架构师速成 2015-06-24 09:10 409人阅读 评论(2) 收藏
    架构师速成4.1-幼儿园要学会如何学习(转载自36氪) 分类: 架构师速成 2015-06-24 09:05 114人阅读 评论(0) 收藏
    架构师速成-目录 分类: 架构师速成 2015-06-21 20:48 146人阅读 评论(0) 收藏
    架构师速成7-高中 分类: 架构师速成 2015-06-21 19:17 132人阅读 评论(0) 收藏
    架构师速成6-初中 分类: 架构师速成 2015-06-20 12:08 149人阅读 评论(0) 收藏
  • 原文地址:https://www.cnblogs.com/ZERO-/p/6485664.html
Copyright © 2011-2022 走看看