在使用Selector时首先需要通过静态方法open创建Selector对象
1 public static Selector open() throws IOException { 2 return SelectorProvider.provider().openSelector(); 3 }
可以看到首先是调用SelectorProvider的静态方法provider,得到一个Selector的提供者
1 public static SelectorProvider provider() { 2 synchronized (lock) { 3 if (provider != null) 4 return provider; 5 return AccessController.doPrivileged( 6 new PrivilegedAction<SelectorProvider>() { 7 public SelectorProvider run() { 8 if (loadProviderFromProperty()) 9 return provider; 10 if (loadProviderAsService()) 11 return provider; 12 provider = sun.nio.ch.DefaultSelectorProvider.create(); 13 return provider; 14 } 15 }); 16 } 17 }
这段代码的逻辑也比较简单,首先判断provider是否已经产生,若已经产生,则直接返回现有的;若没有,则需要调用AccessController的静态方法doPrivileged,该方法是一个native方法,就不说了;可以看到在实现的PrivilegedAction接口中的run方法,做了三次判断:
第一次是根据是系统属性,使用ClassLoader类加载:
1 private static boolean loadProviderFromProperty() { 2 String cn = System.getProperty("java.nio.channels.spi.SelectorProvider"); 3 if (cn == null) 4 return false; 5 try { 6 Class<?> c = Class.forName(cn, true, 7 ClassLoader.getSystemClassLoader()); 8 provider = (SelectorProvider)c.newInstance(); 9 return true; 10 } catch (ClassNotFoundException x) { 11 throw new ServiceConfigurationError(null, x); 12 } catch (IllegalAccessException x) { 13 throw new ServiceConfigurationError(null, x); 14 } catch (InstantiationException x) { 15 throw new ServiceConfigurationError(null, x); 16 } catch (SecurityException x) { 17 throw new ServiceConfigurationError(null, x); 18 } 19 }
先获取键值为"java.nio.channels.spi.SelectorProvider"的属性,若没有,则直接返回false;若设置了,则需要使用加载器直接加载系统属性设置的java.nio.channels.spi.SelectorProvider的实现类,再通过反射机制直接产生实例对象并赋值给静态成员provider,最后返回true。
第二次使用ServiceLoader加载:
1 private static boolean loadProviderAsService() { 2 ServiceLoader<SelectorProvider> sl = 3 ServiceLoader.load(SelectorProvider.class, 4 ClassLoader.getSystemClassLoader()); 5 Iterator<SelectorProvider> i = sl.iterator(); 6 for (;;) { 7 try { 8 if (!i.hasNext()) 9 return false; 10 provider = i.next(); 11 return true; 12 } catch (ServiceConfigurationError sce) { 13 if (sce.getCause() instanceof SecurityException) { 14 // Ignore the security exception, try the next provider 15 continue; 16 } 17 throw sce; 18 } 19 } 20 }
有关ServiceLoader的加载过程可以看我的上一篇博客【Java】ServiceLoader源码分析,在这里我就不累赘了。
该方法调用ServiceLoader的load加载在"META-INF/services/"路径下指明的SelectorProvider.class的实现类(其实是懒加载,在迭代时才真正加载)得到ServiceLoader对象,通过该对象的带迭代器,遍历这个迭代器;可以看到若是迭代器不为空,则直接返回迭代器保存的第一个元素,即第一个被加载的类的对象,并赋值给provider,返回true;否则返回false;
第三次是使用的默认的SelectorProvider(windows环境为例):
1 public class DefaultSelectorProvider { 2 private DefaultSelectorProvider() { 3 } 4 5 public static SelectorProvider create() { 6 return new WindowsSelectorProvider(); 7 } 8 }
可以看到直接返回了WindowsSelectorProvider赋值给provider ;
此时provider无论如何都已经有了,接下来就是调用provider的openSelector方法。
WindowsSelectorProvider的openSelector方法:
1 public class WindowsSelectorProvider extends SelectorProviderImpl { 2 public WindowsSelectorProvider() { 3 } 4 5 public AbstractSelector openSelector() throws IOException { 6 return new WindowsSelectorImpl(this); 7 } 8 }
可以看到仅仅是产生了WindowsSelectorImpl:
1 WindowsSelectorImpl(SelectorProvider var1) throws IOException { 2 super(var1); 3 this.wakeupSourceFd = ((SelChImpl)this.wakeupPipe.source()).getFDVal(); 4 SinkChannelImpl var2 = (SinkChannelImpl)this.wakeupPipe.sink(); 5 var2.sc.socket().setTcpNoDelay(true); 6 this.wakeupSinkFd = var2.getFDVal(); 7 this.pollWrapper.addWakeupSocket(this.wakeupSourceFd, 0); 8 }
WindowsSelectorImpl首先调用父类SelectorImpl的构造方法:
1 protected Set<SelectionKey> selectedKeys = new HashSet(); 2 protected HashSet<SelectionKey> keys = new HashSet(); 3 private Set<SelectionKey> publicKeys; 4 private Set<SelectionKey> publicSelectedKeys; 5 6 protected SelectorImpl(SelectorProvider var1) { 7 super(var1); 8 if (Util.atBugLevel("1.4")) { 9 this.publicKeys = this.keys; 10 this.publicSelectedKeys = this.selectedKeys; 11 } else { 12 this.publicKeys = Collections.unmodifiableSet(this.keys); 13 this.publicSelectedKeys = Util.ungrowableSet(this.selectedKeys); 14 } 15 16 }
SelectorImpl同样调用父类AbstractSelector的构造:
1 protected AbstractSelector(SelectorProvider provider) { 2 this.provider = provider; 3 }
此时的provider就是刚才产生的WindowsSelectorProvider对象;
在SelectorImpl中还会对其成员有一系列的赋值操作;
上述都完成后才继续完成WindowsSelectorImpl的构造。
WindowsSelectorImpl在进行this.wakeupSourceFd = ((SelChImpl)this.wakeupPipe.source()).getFDVal()之前,其wakeupPipe成员如下:
1 private final Pipe wakeupPipe = Pipe.open();
wakeupPipe管道通过Pipe.open()赋值:
1 public static Pipe open() throws IOException { 2 return SelectorProvider.provider().openPipe(); 3 }
可以看到实际上 SelectorProvider.provider()的provider的openPipe方法,而这个provider就是WindowsSelectorProvider,而WindowsSelectorProvider继承自SelectorProviderImpl,openPipe方法是在SelectorProviderImpl里实现的:
1 public Pipe openPipe() throws IOException { 2 return new PipeImpl(this); 3 }
该方法直接产生了PipeImpl对象,并将WindowsSelectorProvider对象传入进去:
1 PipeImpl(SelectorProvider var1) throws IOException { 2 try { 3 AccessController.doPrivileged(new PipeImpl.Initializer(var1)); 4 } catch (PrivilegedActionException var3) { 5 throw (IOException)var3.getCause(); 6 } 7 }
可以看到这个构造方法实际上是以特权模式运行的PipeImpl的内部类Initializer的run方法(doPrivileged需要的参数是PrivilegedExceptionAction接口的实现类,该接口只有run方法):
Initializer 的初始化:
1 private class Initializer implements PrivilegedExceptionAction<Void> { 2 private final SelectorProvider sp; 3 private IOException ioe; 4 5 private Initializer(SelectorProvider var2) { 6 this.ioe = null; 7 this.sp = var2; 8 } 9 ...... 10 }
该构造方法给sp赋值为传入进来的WindowsSelectorProvider对象,令ioe=null;
其所实现的run方法如下:
1 public Void run() throws IOException { 2 PipeImpl.Initializer.LoopbackConnector var1 = new PipeImpl.Initializer.LoopbackConnector(); 3 var1.run(); 4 if (this.ioe instanceof ClosedByInterruptException) { 5 this.ioe = null; 6 Thread var2 = new Thread(var1) { 7 public void interrupt() { 8 } 9 }; 10 var2.start(); 11 12 while(true) { 13 try { 14 var2.join(); 15 break; 16 } catch (InterruptedException var4) { 17 ; 18 } 19 } 20 21 Thread.currentThread().interrupt(); 22 } 23 24 if (this.ioe != null) { 25 throw new IOException("Unable to establish loopback connection", this.ioe); 26 } else { 27 return null; 28 } 29 }
首先产生LoopbackConnector 对象,是Initializer的内部类,而且实现了Runnable接口:
1 private class LoopbackConnector implements Runnable { 2 private LoopbackConnector() { 3 } 4 }
其实现的run方法如下:
1 public void run() { 2 ServerSocketChannel var1 = null; 3 SocketChannel var2 = null; 4 SocketChannel var3 = null; 5 6 try { 7 ByteBuffer var4 = ByteBuffer.allocate(16); 8 ByteBuffer var5 = ByteBuffer.allocate(16); 9 InetAddress var6 = InetAddress.getByName("127.0.0.1"); 10 11 assert var6.isLoopbackAddress(); 12 13 InetSocketAddress var7 = null; 14 15 while(true) { 16 if (var1 == null || !var1.isOpen()) { 17 var1 = ServerSocketChannel.open(); 18 var1.socket().bind(new InetSocketAddress(var6, 0)); 19 var7 = new InetSocketAddress(var6, var1.socket().getLocalPort()); 20 } 21 22 var2 = SocketChannel.open(var7); 23 PipeImpl.RANDOM_NUMBER_GENERATOR.nextBytes(var4.array()); 24 25 do { 26 var2.write(var4); 27 } while(var4.hasRemaining()); 28 29 var4.rewind(); 30 var3 = var1.accept(); 31 32 do { 33 var3.read(var5); 34 } while(var5.hasRemaining()); 35 36 var5.rewind(); 37 if (var5.equals(var4)) { 38 PipeImpl.this.source = new SourceChannelImpl(Initializer.this.sp, var2); 39 PipeImpl.this.sink = new SinkChannelImpl(Initializer.this.sp, var3); 40 break; 41 } 42 43 var3.close(); 44 var2.close(); 45 } 46 } catch (IOException var18) { 47 try { 48 if (var2 != null) { 49 var2.close(); 50 } 51 52 if (var3 != null) { 53 var3.close(); 54 } 55 } catch (IOException var17) { 56 ; 57 } 58 59 Initializer.this.ioe = var18; 60 } finally { 61 try { 62 if (var1 != null) { 63 var1.close(); 64 } 65 } catch (IOException var16) { 66 ; 67 } 68 69 } 70 71 }
在这个run方法中首先定义了三个Channel一个ServerSocketChannel和两个SocketChannel,然后申请了两个十六字节的ByteBuffer缓冲区,定义了一个回送地址var6;在while循环中先检查ServerSocketChannel是否开启了,若没有则需要调用open方法开启并赋值给var1,绑定地址为var6即回送地址,端口为0,令var7这个InetSocketAddress对象的地址是var6,端口是ServerSocketChannel的端口;ServerSocketChannel初始化完毕,初始化一个SocketChannel即var2,通过刚才的var7这个InetSocketAddress对象和ServerSocketChannel建立连接;
在PipeImpl里有一个静态成员:
1 private static final Random RANDOM_NUMBER_GENERATOR = new SecureRandom();
RANDOM_NUMBER_GENERATOR 听名字就知道它是用来生成随机数;
通过RANDOM_NUMBER_GENERATOR将从生成的随机数存放在其中一个缓冲区ByteBuffer(var4)中,然后通过刚才连接好的SocketChannel即var2的write方法写入缓冲区中的所有可用数据发送给ServerSocketChannel;令var4缓冲区标志置0;接着ServerSocketChannel调用accept方法侦听刚才的连接产生一个SocketChannel对象var3,从var3中读取数据存放在缓冲区var5中,令var5缓冲区标志置0;然后比较var4和var5中的内容是否一致,若是一致则给PipeImpl的成员source和sink分别初始化保存起来,若不一致就继续循环,不断地重复上述过程,直至Pipe通道成功建立;至此结束LoopbackConnector的run方法。
其在连接建立的过程中若是出现了异常会通过Initializer的ioe成员保存异常。
再回到Initializer的run方法,在完成LoopbackConnector的run方法后,再根据ioe判读是否在刚才的连接建立中出现了ClosedByInterruptException异常,若是出现还需要通过线程启动LoopbackConnector的run方法直至其结束;若不是ClosedByInterruptException异常则直接抛出IOException。
至此PipeImpl的构造结束,再回到WindowsSelectorImpl的构造,通过上述的操作产生的PipeImpl对象就赋值给了wakeupPipe成员;wakeupPipe的source就是刚才产生的SourceChannelImpl对象,wakeupPipe的sink就是刚才产生的SinkChannelImpl对象,再使用wakeupSourceFd保存source的fdVal值和wakeupSinkFd保存sink的fdVal值;并且禁用Nagle算法,最后使用pollWrpper成员保存source的fdVal值。
上述建立的这个连接通道的主要目的不是为了确保能建立连接,而是为了解决Selector的select方法的阻塞问题,调用select方法时只有注册在Selector上的channel有事件就绪时才会被唤醒,而Selector提供的wakeup方法就利用了上述建立好的通道,通过SinkChannel给SourceChannel发送信号量,使得select被唤醒,具体实现会在后续的博客给出。
Selector到此创建完毕。