n^n 的位数 k = [lg(n^n)]+1=[n*lg(n)]+1;
最左边的数 x = n^n/10^(k-1);
取对数:lg(x) = n * lg(n) - (k-1) = (n*lg(n) - [n*lg(n)]);
最左边的数:[x] = [10^lg(x)] = [10^(n*lg(n) - [n*lg(n)])];
#include<iostream> #include<cmath> #include<cstdio> using namespace std; int main() { int n, t; scanf("%d", &t); while (t--) { scanf("%d", &n); double a = n * log10(n); printf("%d ", (int)pow(10.0, a-(long long)a)); } }
Stirling公式:
根据Stirling公式n! 与√(2πn) * (n/e)^n的值十分接近
n! 的位数 k = [lg(n!)]+1;
最左边的数 x = n!/10^(k-1);
取对数:lg(x) = lg(n!) - (k-1) ;
lg(n!) = lg(√(2πn) * (n/e)^n) = 1/2*(lg(2π) + lg(n)) + n * (lg(n) - lg(e));
代入[x] = [10^lg(x)] = [10^(lg(n!) - [lg(n!)])]即可。
#include<iostream> #include<cmath> #include<cstdio> using namespace std;
const double PI = 3.1415926;
const double e = 2.718; int main() { int n, t; scanf("%d", &t); while (t--) { scanf("%d", &n); double b = (log10(2 * PI) + log10(n)) / 2 + n * (log10(n) - log10(e)); printf("%d ", (int)pow(10.0, b-(long long)b)); } }