zoukankan      html  css  js  c++  java
  • (Dinic) hdu 3549

    Flow Problem

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 8864    Accepted Submission(s): 4170


    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
     
    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
     
    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
     
    Sample Input
    2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
     
    Sample Output
    Case 1: 1 Case 2: 2
     
    Author
    HyperHexagon
     
    Source
     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<cstdlib>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    using namespace std;
    #define INF 0x7fffffff
    queue<int> q;
    int tab[250][250],dist[250];
    int n,m,ans,tt;
    int bfs()
    {
        int x;
        memset(dist,-1,sizeof(dist));
        dist[1]=0;
        q.push(1);
        while(!q.empty())
        {
            x=q.front(),q.pop();
            for(int i=1;i<=n;i++)
            {
                if(tab[x][i]>0&&dist[i]<0)
                {
                    dist[i]=dist[x]+1;
                    q.push(i);
                }
            }
        }
        if(dist[n]>0)
            return 1;
        else
        return 0;
    }
    int find(int x,int low)
    {
        int a=0;
        if(x==n) return low;
        for(int i=1;i<=n;i++)
        {
            if(tab[x][i]>0&&dist[i]==dist[x]+1&&(a=find(i,min(low,tab[x][i]))))
            {
                tab[x][i]-=a;
                tab[i][x]+=a;
                return a;
            }
        }
        return 0;
    }
    int main()
    {
        int f,t,flow,tans;
        scanf("%d",&tt);
        while(tt--)
        {
            scanf("%d%d",&n,&m);
            for(int i=1;i<=m;i++)
            {
                scanf("%d%d%d",&f,&t,&flow);
                tab[f][t]+=flow;
            }
            ans=0;
            while(bfs())
            {
                if(tans=find(1,INF)) ans+=tans;
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
    

      

      

  • 相关阅读:
    QT获取句柄
    java多线程关键字volatile、lock、synchronized
    Java几种常见的设计模式
    将博客搬至CSDN
    0228-0308的笔记
    深入理解es6-Promise对象
    彻底理解正则
    es6学习笔记-class之继承
    es6学习笔记-class之一概念
    arguments对象详解
  • 原文地址:https://www.cnblogs.com/a972290869/p/4249238.html
Copyright © 2011-2022 走看看