zoukankan      html  css  js  c++  java
  • (Dinic) hdu 3549

    Flow Problem

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 8864    Accepted Submission(s): 4170


    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
     
    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
     
    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
     
    Sample Input
    2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
     
    Sample Output
    Case 1: 1 Case 2: 2
     
    Author
    HyperHexagon
     
    Source
     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<cstdlib>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    using namespace std;
    #define INF 0x7fffffff
    queue<int> q;
    int tab[250][250],dist[250];
    int n,m,ans,tt;
    int bfs()
    {
        int x;
        memset(dist,-1,sizeof(dist));
        dist[1]=0;
        q.push(1);
        while(!q.empty())
        {
            x=q.front(),q.pop();
            for(int i=1;i<=n;i++)
            {
                if(tab[x][i]>0&&dist[i]<0)
                {
                    dist[i]=dist[x]+1;
                    q.push(i);
                }
            }
        }
        if(dist[n]>0)
            return 1;
        else
        return 0;
    }
    int find(int x,int low)
    {
        int a=0;
        if(x==n) return low;
        for(int i=1;i<=n;i++)
        {
            if(tab[x][i]>0&&dist[i]==dist[x]+1&&(a=find(i,min(low,tab[x][i]))))
            {
                tab[x][i]-=a;
                tab[i][x]+=a;
                return a;
            }
        }
        return 0;
    }
    int main()
    {
        int f,t,flow,tans;
        scanf("%d",&tt);
        while(tt--)
        {
            scanf("%d%d",&n,&m);
            for(int i=1;i<=m;i++)
            {
                scanf("%d%d%d",&f,&t,&flow);
                tab[f][t]+=flow;
            }
            ans=0;
            while(bfs())
            {
                if(tans=find(1,INF)) ans+=tans;
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
    

      

      

  • 相关阅读:
    mysql日期计算转换
    Mysql的DATE_FORMAT()日期格式转换
    JDBC连接池BoneCP
    JSP之三大指令
    JSP的三大指令 七大动作 九大对象
    JSP的语法
    orcale序列操作
    Orcale约束-------外键约束
    Orcale约束-------檢查約束
    Orcale约束-------主键约束
  • 原文地址:https://www.cnblogs.com/a972290869/p/4249238.html
Copyright © 2011-2022 走看看