zoukankan      html  css  js  c++  java
  • keras 极简搭建VGG16 手写数字识别

    使用VGG16网络 完成迁移学习案例

    from keras.applications.vgg16 import VGG16
    from keras.models import Sequential
    from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense
    from keras.optimizers import SGD
    from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
    import numpy as np
    from keras.utils import  np_utils
    import cv2
    import pickle
    import matplotlib.pyplot as plt
    from keras.datasets import mnist
    
    # 得到适合网络的数据
    (X_train_data, Y_train), (X_test_data, Y_test) = mnist.load_data()  # 下载数据
    X_train_data = X_train_data.astype('float32')  # uint8-->float32
    X_test_data = X_test_data.astype('float32')
    X_train_data /= 255  # 归一化到0~1区间
    X_test_data /= 255
    # (60000, 48, 48, 3)
    X_train = []
    # (10000, 48, 48, 3)
    X_test = []
    # 把(27, 27, 1)维的数据转化成(48, 48, 3)维的数据
    for i in range(X_train_data.shape[0]):
        X_train.append(cv2.cvtColor(cv2.resize(X_train_data[i], (48, 48)), cv2.COLOR_GRAY2RGB))
    for i in range(X_test_data.shape[0]):
        X_test.append(cv2.cvtColor(cv2.resize(X_test_data[i], (48, 48)), cv2.COLOR_GRAY2RGB))
    
    X_train = np.array(X_train)
    X_test = np.array(X_test)
    # 独热编码
    y_train = np_utils.to_categorical(Y_train, num_classes=10)
    y_test = np_utils.to_categorical(Y_test, num_classes=10)
    
    # 构建网络
    vgg16_model = VGG16(weights='imagenet', include_top=False, input_shape=(48, 48, 3))
    for layer in vgg16_model.layers:
        layer.trainable = False # 别去调整之前的卷积层的参数
    
    top_model = Sequential()
    top_model.add(Flatten(input_shape=vgg16_model.output_shape[1:]))
    top_model.add(Dense(512, activation='relu'))
    top_model.add(Dropout(0.4))
    top_model.add(Dense(10, activation='softmax'))
    
    model = Sequential()
    model.add(vgg16_model)
    model.add(top_model)
    sgd = SGD(learning_rate=0.05, decay=1e-5)
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])
    model.fit(X_train, y_train, batch_size=128, epochs=15)
    model.evaluate(X_test, y_test)

    我跑了30轮数据,测试集上准确率在0.9833左右

  • 相关阅读:
    工具.MySQL
    SqlServer.日期时间格式化输出(资料)
    SqlServer2012.安装
    SQL.【转】获取存储过程返回值的几种方式
    SQL.【转】SqlServer如何获取存储过程的返回值
    SQL.@,@@、#,##
    Oracle10g.CentOS6安装_遇到的问题(02)
    jQuery FileUpload 插件[转]
    EF6+Oracle12c+DBFirst+VS2015:EF6.0添加实体模型闪退问题解决
    IIS
  • 原文地址:https://www.cnblogs.com/abc23/p/12300712.html
Copyright © 2011-2022 走看看