zoukankan      html  css  js  c++  java
  • 问题 J: Simple Knapsack

    问题 J: Simple Knapsack

    时间限制: 1 Sec  内存限制: 128 MB
    提交: 65  解决: 24
    [提交][状态][讨论版][命题人:admin]

    题目描述

    You have N items and a bag of strength W. The i-th item has a weight of wi and a value of vi.
    You will select some of the items and put them in the bag. Here, the total weight of the selected items needs to be at most W.
    Your objective is to maximize the total value of the selected items.

    Constraints
    1≤N≤100
    1≤W≤109
    1≤wi≤109
    For each i=2,3,…,N, w1≤wi≤w1+3.
    1≤vi≤107
    W, each wi and vi are integers.

    输入

    Input is given from Standard Input in the following format:
    N W
    w1 v1
    w2 v2
    :
    wN vN

    输出

    Print the maximum possible total value of the selected items.

    样例输入

    4 6
    2 1
    3 4
    4 10
    3 4
    

    样例输出

    11
    

    提示

    The first and third items should be selected.

    题意: 背包大小 1e9 范围内的01背包。

    思路:

    每个物品的w 只有四种状态(w[1] <= w[i] <= w[1] +3),那么可以 将每个 w[i] 减小 w[1]  ,然后维护到前 i 个 数取 j 个 数时的01背包。

    代码如下:

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const ll maxn=110;
    ll dp[maxn][maxn*3];
    ll n,s,w[maxn],v[maxn];
     
    int main(){
        cin>>n>>s;
        for (int i=1; i<=n ;i++)
            cin>>w[i]>>v[i];
        w[0]=w[1]-1;
        ll sum=0;
        for (int i=1; i<=n ;i++) w[i]-=w[0],sum+=w[i];
        ll ans=0;
     
        for (int i=1; i<=n ;i++){
            for (int j=i;j >=1;j--){
                for (int k=sum;k>=w[i];k--){
                    dp[j][k]=max(dp[j][k],dp[j-1][k-w[i]]+v[i]);
                    if(1ll*j*w[0]+k<=s) ans=max(dp[j][k],ans);
                }
            }
        }
     
        cout<<ans<<endl;
        return 0;
    }


  • 相关阅读:
    Gitlab安装与备份恢复
    Logstash使用grok插件解析Nginx日志
    SSH登录启用Google二次身份验证
    Nginx隐藏标识以及其版本号
    Nginx虚拟目录设置
    Tomcat虚拟目录设置
    sqlserver无法连接
    Howto: 如何将ArcGIS Server缓存移动到新服务器
    优酷网架构学习笔记
    .net中自定义过滤器对Response内容进行处理
  • 原文地址:https://www.cnblogs.com/acerkoo/p/9490315.html
Copyright © 2011-2022 走看看