zoukankan      html  css  js  c++  java
  • kafka(二) 高性能技术分析

    参考文章:

    http://www.infoq.com/cn/articles/kafka-analysis-part-6

    Partition提供并行处理的能力

    Kafka是一个Pub-Sub的消息系统,无论是发布还是订阅,都须指定Topic。Topic只是一个逻辑的概念。每个Topic都包含一个或多个Partition,不同Partition可位于不同节点。同时Partition在物理上对应一个本地文件夹,每个Partition包含一个或多个Segment,每个Segment包含一个数据文件和一个与之对应的索引文件。在逻辑上,可以把一个Partition当作一个非常长的数组,可通过这个“数组”的索引(offset)去访问其数据。

    一方面,由于不同Partition可位于不同机器,因此可以充分利用集群优势,实现机器间的并行处理。另一方面,由于Partition在物理上对应一个文件夹,即使多个Partition位于同一个节点,也可通过配置让同一节点上的不同Partition置于不同的disk drive上,从而实现磁盘间的并行处理,充分发挥多磁盘的优势

    利用多磁盘的具体方法是,将不同磁盘mount到不同目录,然后在server.properties中,将log.dirs设置为多目录(用逗号分隔)。Kafka会自动将所有Partition尽可能均匀分配到不同目录也即不同目录(也即不同disk)上。

    虽然物理上最小单位是Segment,但Kafka并不提供同一Partition内不同Segment间的并行处理。因为对于写而言,每次只会写Partition内的一个Segment,而对于读而言,也只会顺序读取同一Partition内的不同Segment

    client如何找到一条massage:

    比如:要查找绝对offset为7的Message:
        1)是用二分查找确定它是在哪个LogSegment中,自然是在第一个Segment中
        2)打开这个Segment的index文件,也是用二分查找找到offset小于或者等于指定offset的索引条目中最大的那个offset。自然offset为6的那个索引是我们要找的,通过索引文件我们知道offset为6的Message在数据文件中的位置为9807
        3)打开数据文件,从位置为9807的那个地方开始顺序扫描直到找到offset为7的那条Message
    这套机制是建立在offset是有序的。索引文件被映射到内存中,所以查找的速度还是很快的
    一句话,Kafka的Message存储采用了分区(partition),分段(LogSegment)和稀疏索引这几个手段来达到了高效性

    Partition是最小并发粒度

    多Consumer消费同一个Topic时,同一条消息只会被同一Consumer Group内的一个Consumer所消费。而数据并非按消息为单位分配,而是以Partition为单位分配,也即同一个Partition的数据只会被一个Consumer所消费(在不考虑Rebalance的前提下)。

    ISR实现可用性与数据一致性的动态平衡

    在CAP理论下,更多的是需要在可用性和一致性之间做权衡

    常用数据复制及一致性方案

    • Master-Slave

    - RDBMS的读写分离即为典型的Master-Slave方案
    - 同步复制可保证强一致性但会影响可用性
    - 异步复制可提供高可用性但会降低一致性

    • WNR

    - 主要用于去中心化的分布式系统中。DynamoDB与Cassandra即采用此方案或其变种
    - N代表总副本数,W代表每次写操作要保证的最少写成功的副本数,R代表每次读至少要读取的副本数
    - 当W+R>N时,可保证每次读取的数据至少有一个副本拥有最新的数据
    - 多个写操作的顺序难以保证,可能导致多副本间的写操作顺序不一致。Dynamo通过向量时钟保证最终一致性

    • Paxos及其变种

    - Google的Chubby,Zookeeper的原子广播协议(Zab),RAFT等

    • 基于ISR的数据复制方案

    ISR,也即In-sync Replica。每个Partition的Leader都会维护这样一个列表,该列表中,包含了所有与之同步的Replica(包含Leader自己)

    这个ISR是由Leader动态维护的。如果Follower不能紧“跟上”Leader,它将被Leader从ISR中移除,待它又重新“跟上”Leader后,会被Leader再次加加ISR中。每次改变ISR后,Leader都会将最新的ISR持久化到Zookeeper

    可以通过request.required.acks 来设置同步复制or异步复制
    0 ,相当于异步发送,消息发送完毕即offset增加,继续生产
    1,leader收到leader replica 对一个消息的接受ack才增加offset,然后继续生产
    -1,leader收到所有replica 对一个消息的接受ack才增加offset,然后继续生产

    优势
    1)由于Leader可移除不能及时与之同步的Follower,故与同步复制相比可避免最慢的Follower拖慢整体速度,也即ISR提高了系统可用性
    2)ISR中的所有Follower都包含了所有Commit过的消息,而只有Commit过的消息才会被Consumer消费,故从Consumer的角度而言,ISR中的所有Replica都始终处于同步状态,从而与异步复制方案相比提高了数据一致性
    3)ISR可动态调整,极限情况下,可以只包含Leader,极大提高了可容忍的宕机的Follower的数量。与Majority Quorum方案相比,容忍相同个数的节点失败,所要求的总节点数少了近一半。

    顺序写磁盘

    • 根据《一些场景下顺序写磁盘快于随机写内存》所述,将写磁盘的过程变为顺序写,可极大提高对磁盘的利用率。
    • 数据删除,并非通过使用“读-写”模式去修改文件,而是将Partition分为多个Segment,每个Segment对应一个物理文件,通过删除整个文件的方式去删除Partition内的数据。这种方式清除旧数据的方式,也避免了对文件的随机写操作

    充分利用Page Cache

    - I/O Scheduler会将连续的小块写组装成大块的物理写从而提高性能
    - I/O Scheduler会尝试将一些写操作重新按顺序排好,从而减少磁盘头的移动时间
    - 充分利用所有空闲内存(非JVM内存)。如果使用应用层Cache(即JVM堆内存),会增加GC负担
    - 读操作可直接在Page Cache内进行。如果消费和生产速度相当,甚至不需要通过物理磁盘(直接通过Page Cache)交换数据
    - 如果进程重启,JVM内的Cache会失效,但Page Cache仍然可用

    Broker收到数据后,写磁盘时只是将数据写入Page Cache,并不保证数据一定完全写入磁盘。从这一点看,可能会造成机器宕机时,Page Cache内的数据未写入磁盘从而造成数据丢失。但是这种丢失只发生在机器断电等造成操作系统不工作的场景,而这种场景完全可以由Kafka层面的Replication机制去解决。如果为了保证这种情况下数据不丢失而强制将Page Cache中的数据Flush到磁盘,反而会降低性能。也正因如此,Kafka虽然提供了flush.messages和flush.ms两个参数将Page Cache中的数据强制Flush到磁盘,但是Kafka并不建议使用

    支持多Disk Drive

    Broker的log.dirs配置项,允许配置多个文件夹。如果机器上有多个Disk Drive,可将不同的Disk挂载到不同的目录,然后将这些目录都配置到log.dirs里。Kafka会尽可能将不同的Partition分配到不同的目录,也即不同的Disk上,从而充分利用了多Disk的优势

    零拷贝

    Kafka中存在大量的网络数据持久化到磁盘(Producer到Broker)和磁盘文件通过网络发送(Broker到Consumer)的过程。这一过程的性能直接影响Kafka的整体吞吐量。
    传统模式下的四次拷贝与四次上下文切换
    以将磁盘文件通过网络发送为例。传统模式下,一般使用如下伪代码所示的方法先将文件数据读入内存,然后通过Socket将内存中的数据发送出去。
    这一过程实际上发生了四次数据拷贝。首先通过系统调用将文件数据读入到内核态Buffer(DMA拷贝),然后应用程序将内存态Buffer数据读入到用户态Buffer(CPU拷贝),接着用户程序通过Socket发送数据时将用户态Buffer数据拷贝到内核态Buffer(CPU拷贝),最后通过DMA拷贝将数据拷贝到NIC Buffer。同时,还伴随着四次上下文切换。
    sendfile和transferTo实现零拷贝
    而Linux 2.4+内核通过sendfile系统调用,提供了零拷贝。数据通过DMA拷贝到内核态Buffer后,直接通过DMA拷贝到NIC Buffer,无需CPU拷贝。这也是零拷贝这一说法的来源。除了减少数据拷贝外,因为整个读文件-网络发送由一个sendfile调用完成,整个过程只有两次上下文切换,因此大大提高了性能。零拷贝过程如下图所示

    减少网络开销

    批处理

    批处理是一种常用的用于提高I/O性能的方式。对Kafka而言,批处理既减少了网络传输的Overhead,又提高了写磁盘的效率。
    1)Kafka 0.8.1及以前的Producer区分同步Producer和异步Producer。同步Producer的send方法主要分两种形式。一种是接受一个KeyedMessage作为参数,一次发送一条消息。另一种是接受一批KeyedMessage作为参数,一次性发送多条消息。而对于异步发送而言,无论是使用哪个send方法,实现上都不会立即将消息发送给Broker,而是先存到内部的队列中,直到消息条数达到阈值或者达到指定的Timeout才真正的将消息发送出去,从而实现了消息的批量发送。
    2)Kafka 0.8.2开始支持新的Producer API,将同步Producer和异步Producer结合。虽然从send接口来看,一次只能发送一个ProducerRecord,而不能像之前版本的send方法一样接受消息列表,但是send方法并非立即将消息发送出去,而是通过batch.size和linger.ms控制实际发送频率,从而实现批量发送。
    由于每次网络传输,除了传输消息本身以外,还要传输非常多的网络协议本身的一些内容(称为Overhead),所以将多条消息合并到一起传输,可有效减少网络传输的Overhead,进而提高了传输效率

    数据压缩降低网络负载

    Kafka从0.7开始,即支持将数据压缩后再传输给Broker。除了可以将每条消息单独压缩然后传输外,Kafka还支持在批量发送时,将整个Batch的消息一起压缩后传输。数据压缩的一个基本原理是,重复数据越多压缩效果越好。因此将整个Batch的数据一起压缩能更大幅度减小数据量,从而更大程度提高网络传输效率。
    Broker接收消息后,并不直接解压缩,而是直接将消息以压缩后的形式持久化到磁盘。Consumer Fetch到数据后再解压缩。因此Kafka的压缩不仅减少了Producer到Broker的网络传输负载,同时也降低了Broker磁盘操作的负载,也降低了Consumer与Broker间的网络传输量,从而极大得提高了传输效率,提高了吞吐量。

    高效的序列化方式

    Kafka消息的Key和Payload(或者说Value)的类型可自定义,只需同时提供相应的序列化器和反序列化器即可。因此用户可以通过使用快速且紧凑的序列化-反序列化方式(如Avro,Protocal Buffer)来减少实际网络传输和磁盘存储的数据规模,从而提高吞吐率。这里要注意,如果使用的序列化方法太慢,即使压缩比非常高,最终的效率也不一定高

  • 相关阅读:
    中文词频统计
    复合数据类型,英文词频统计
    Mybatis 异常:Cause: java.io.IOException: Could not find resource com.xxx.xxx.xml
    Ajax:修改了项目的ajax相关代码,点击运行没有效果
    大数据应用期末总评
    分布式并行计算MapReduce
    分布式文件系统HDFS 练习
    安装关系型数据库MySQL和大数据处理框架Hadoop
    爬虫综合大作业
    爬取全部的校园新闻
  • 原文地址:https://www.cnblogs.com/amei0/p/8082354.html
Copyright © 2011-2022 走看看